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ABSTRACT
Automating the process of diagnosing pneumonia from radio-graph

is of great importance and practical implication. However, this task

is challenging due to three facts. First, training a reliable disease de-

tection model requires a large amount of labeled dataset that is not

available before the Chest X-ray 14 dataset. Second, unlike general

image classification that intends to extract main patterns (feature

maps) from images, the thoracic disease diagnosing task aims at

extracting disease information (feature maps) from the background.

In this paper, we model the disease detection task using convolu-

tional neural network and customized the specialty of Chest X-ray

dataset. The experimental results showed that the proposed model

can achieve the good performance. We conclude that: (1).CNN with

Transfer learning can classify the X-ray images with an accuracy of

around 70.5% based on this ChestX-ray14 dataset, and the transfer

learning saves computation resources; (2).Like pneumonia, other

thoracic disease detection and localization can also be automated.

1 INTRODUCTION
Automating the process of diagnosing pneumonia by reading chest

X-ray images is of practical importance but challenging. Pneumonia

refers to lung inflammation (pneumonitis), which affects approx-

imately 450 million people globally (7% of the population) and

results in around 4 million deaths every year [4, 7]. Detecting and

diagnosing pneumonia is of great importance since it’s the first

step towards pneumonia treatment. Combined with physical signs

and medical tests, a chest x-ray is the best available method for di-

agnosing pneumonia since it is relatively cheap and safe. However,

detecting pneumonia using a chest x-ray is challenging because it

requires expertise and experience to correctly interpret the pathol-

ogy. Also, using chest x-ray alone is even difficult for practicing

radiologists to have an accurate diagnosis and interpretation.

The pneumonia diagnosing process can be automated by well

trained models. Traditionally, diagnosing and localizing disease pat-

terns heavily relies on well-trained radiologists or medical image

professionals. Besides, the diagnosis process is highly repetitive

because the task majorly depends on detecting certain patterns on

the chest X-rays. That is, a pathology is always associated with

certain patterns on chest X-rays, while other pathology is con-

nected with distinct patterns. Those characteristics in chest X-rays

diagnosis facilitate automated disease detection since well-trained

models are good at detecting repetitive patterns with invariant char-

acteristics. However, limited work has been done to address this

critical problem due to several reasons. The fundamental reason

is that the available dataset is far from enough to train a reliable

model to detect pneumonia from radiograph before the release of

NIH ChestX-ray14 dataset. Since NIH ChestX-ray14 includes about

112,120 images from 30,805 different patients, it provides enough

labeled images to train a reliable model. Motivated by the avail-

ability of dataset and advancement in deep learning, we present
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Figure 1: Pneumonia classifier framework. The input is a
chest x-ray, and the output is the probability of the presence
of pneumonia.
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Figure 2: The coordinates distribution of 8 thoracic disease
according to the coordinates labeled by radiologists.

a model that automates the pneumonia diagnosis by using image

classification method. The framework is shown in Figre 1.

The automation of pneumonia diagnosis is accomplished by im-

age classification. The task in Image Classification is to take an

array of pixels that represents a single image and assign a label to it.

The input of a classification task consists of a set of N images, each

labeled with one of K different classes. The main task in classifica-

tion is to learn a mapping from images to its label while minimizing

the total differences between the mapping results and labels. Our

pneumonia classifier is based on a pre-trained 121-layer DenseNet,

ingesting chest x-ray images and outputting the probabilities for

pneumonia. Also, disease localization is provided by a heatmap that

can further be transformed into bounding boxes. The pneumonia

classifier is trained on ChestX-ray14 dataset [8], which contains

112,120 chest x-ray images from either posteroanterior (PA) or an-

teroposterior (AP) view [5]. The Chestx-ray14 dataset covers 14
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Figure 3: The coordinates distribution of eight thoracic dis-
eases in a radiograph.

diseases. We show the disease distribution in Figure 2 and Figre 3.

In this paper, we first show how it works to classify pneumonia,

and then modify the model to apply it on eight diseases
1
.

Although the experimental result presented in this paper is out-

put from an 8-disease detection classifier, it can be easily modified

to detect all the 14 diseases in the ChestX-ray14 dataset.

2 RELATEDWORK
Recent advancements in deep learning and the availability of large

labeled datasets have enabled disease detection with reliable perfor-

mance in awide variety of medical imaging tasks, including thoracic

disease detection [8], skin cancer classification [? ], arrhythmia de-

tection, and hemorrhage identification. Wang et al. proposed the

TieNet that combines image features and text embedding extracted

from medical report to classify the chest x-ray images [9]. Yao et al.

presented how to leverage interdependencies among target labels

in predicting 14 pathologic patterns from chest x-rays and establish

state-of-the-art results [10]. Rajpurkar et al. proposed the ChesXnet

and showed that it can outperform radiologists on thoracic dis-

ease detection. Li et al. presented a unified approach that performs

disease identification and localization with weak supervision [3].

Wang et al. opened the ChestX-ray14 dataset that makes large scale

thoracic disease classification possible [8]

3 PROBLEM FORMULATION
Given pneumonia disease (or any thoracic disease), the pneumonia

disease detection task is an image classification problem, where

the input is a chest X-ray image X with label Ỹ ∈ 0, 1′. and the

output is the probability y denoting the probability of the existence

of pneumonia. More generally, we formulated the thoracic disease

classification task as follow.

Definition 3.1 (ThoracicDisease ClassificationTask). Given
a set of thoracic radiographs X = {X1,X2,x3, ...}, find a mapping

1
"Atelectasis", "Cardiomegaly","Effusion", "Infiltration", "Mass","Nodule",

"Pneumonia","Pneumothorax"

Ψ : Rm → Y , where Y ∈ [0, 1], such that the task error is minimized.
Formally, we have

argmin

Ψ

m∑
j=1

| |Ψ(X j ) − Yj | |2 (1)

The mapping Ψ from radiopgrah features to labels is too complex

to represent by a single function. Usually, such a complex mapping

is implemented by a neural network. In our case, we implement it

based on a pre-trained DenseNet that has 121 layers.

For loss function, it is formulated as to minimize the cross en-

tropy as denoted in equation 2 without taking into consideration

of the difference of data distribution.

L(X ,y) = −y logp(Y = 1|X ) − (1 − y) logp(Y = 0|X ) (2)

Where y is the radiograph label and y ∈ {0, 1}.

Considering the unbalanced distribution among different labels,

we include a balancing factor that was introduced by Rajpurkar

et al. in ChestXnet [6]. The balancing factor transforms the cross

entropy into a weighted cross entropy loss.

LWeiдhted−Cross−Entropy (ψ (X ,Y ) =

βPos
∑
y=1

−p(Y = 1|X ) + βNeд
∑
y=0

−p(Y = 0|X ) (3)

Where p(Y = i |X ) i ∈ {0, 1} is the probability that the network

assigns to the label i , and βPos is set to
|P |+ |N |

|P | while βNeд is set

to
|P |+ |N |

|N |
, with |P | and |N | denoting the total number positive

labels (y = 1) and negative labels (y = 0) in a batch of image labels

respectively.

We relabel each chest x-ray image with a 9-dimension vector

li = [li1, li2, ..., liC ] in which lic ∈ 0, 1 and C = 9. lc = 1 denotes

there is pathology findings while lc = 0 denotes that no pathology

is founded. The last element of L represents the label with “No

Finding".

4 CLASSIFIER ARCHITECTURE
Transfer Learning is utilized to train the thoracic disease classifica-

tion model to save time and resources. The modern neural network

usually has millions of parameters. Usually, training a complex

neural network model requires a huge amount of computing re-

sources such as RAM and CPU/GPU if it is trained. Since the High-

Performance Computing Center available could only provide 120

slots with 196 Gigabytes RAM, transfer learning is used to reduce

the amount of training resource required and shorten computing

time. The reason behind this achievement is that transfer learning

could take a piece of a model that has already been trained on a

related task and reusing it in a new model

Adam (short for Adaptive Moment Estimation) optimizer is used

in model training. In Adam, running averages of both the gradients

and the second moments of the gradients are used. Given param-

eters w(t )
and a loss function L(t ), where t indexes the current

training iteration (indexed at 0, Adam’s parameter update is given

by [2].

2



Figure 4: Thoracic disease classification framework.

mt = β1mt−1 + (1 − β1)дt
vt = β2vt−1 + (1 − β2)д

2

t
m̂t =

mt
1−β t

1

v̂t+1 = Θt −
α√
v̂t+ϵ

m̂t

(4)

where ϵ is a small scalar used to prevent division by 0, and β1
and β2 are the forgetting factors for gradients and second moments

of gradients, respectively. Squaring and square-rooting are done

elementwise.

Thoracic disease classifier is based on a 121-layer Dense Convo-

lutional Network (DenseNet) [1], which can make the optimization

of very deep networks converge since it improve gradient flows.

The framework is shown in Figure 4. Each layer has direct access to

the gradients from the loss function and the original input signal,

leading to an implicit deep supervision [1]. The network structure

of thoracic disease classifier is presented in Figure 4. We modify

the last two layers to fit into our application by replacing the final

fully connected layer with the one that has a single output, and

applying a sigmoid activation function to introduce non-linearity.

The weight of thoracic disease classifier is initialized from the

pre-trained DenseNet [1]. The input pictures were tiled to 3 chan-

nel, resized to 224 and normalized with mean [0.485, 0.456, 0.406],

standard deviation [0.229, 0.224, 0.225] on three channels. The net-

work is trained using Adam with standard parameters (β1 = 0.9

and β2 = 0.999) starting from 0.0001 learning rate.

4.1 Dataset and Data Process
We utilize the NIH ChestX-ray14 Dataset [8] to verify the per-

formance of the proposed thoracic classifier. ChestX-ray14 is the

largest publicly available radiograph dataset which has 112,120

chest X-ray images with disease labels collected from 30,805 differ-

ent patients. The total size of the dataset is 42 GB and each image

has 1024 by 1024 pixels. The labels accuracy are expected to be

larger than 90% and are suitable for supervised classification and

localization of Common Thorax Diseases. There are 15 classes (14

diseases, and one for "No findings"). The 14 diseases are Atelectasis,

Consolidation, Infiltration, Pneumothorax, Edema, Emphysema,

Fibrosis, Effusion, Pneumonia, Pleural thickening, Cardiomegaly,

Nodule Mass, and Hernia [8].

Radiographs with any one of the eight classes Atelectasis, Car-
diomegaly, Effusion, Infiltration, Mass, Nodule, Pneumonia, Pneu-
mothorax are extracted from the whole dataset. Also, the radio-

graphs are further processed by data augmentation, including im-

age processing techniques such as Methodology horizontal flipping,

shifting the image, rotating the image and center cropping. More-

over, before an image is fed into the network, the pixel value in the

image array is divided by 255. This

All experiments are run on the CPU cluster (Quanah) in the

High-Performance Computing Center (HPCC), with 200GB RAM

and 120 slots.

4.2 Localization

Figure 5: Localization for different diseases.

We applied class-activation maps (CAM, grad-CAM) on models to

assist in predicting the bounding boxes [11]. Localization can be

easily achieved with the global average layer and the dense layer

in the very last part of the model if they exist. By performing a

linear combination on the maps before entering GAP, heat-maps

are obtained and localization predictions are made according to it.

After calculating the heat map, we select global peak value, scaled

by a factor of 0.9, as the threshold to select local maximum points

with intensity high enough. We apply a maximum filter and a min-

imum filter to each heat map, and calculate the difference between

resulting heat maps to get probable regions with local maximal

centroids. Then, for all the local maxima greater than the threshold

in the image, we applied dilation on them to accumulate multi-

ple candidate points, and choose the centroid of the accumulated

components as the center of a predicted bounding box.

Also, we utilized a fixed size bounding box for each disease, since

we have observed that the same disease tends to have a similar

box size. The localization results are shown in Figure 5. For each

image with certain prediction and its corresponding heat map, we

first construct a box covering every local maximal centroid whose

boundaries are not lower than a given threshold. The box size is then

calculated as the average of all these boxes, for each distinct disease.

Thresholds for each class is initially set as 0.88, and decreases by

0.02 on every experiment to get the threshold producing boxes with

3



Pathology Atelectasis Cardiomegaly Effusion Infiltration Mass Nodule Pneumonia Pneumothorax

Wang et al. 0.716 0.807 0.784 0.609 0.706 0.671 0.633 0.806

Yao et al. 0.772 0.904 0.859 0.695 0.792 0.717 0.713 0.841

CheXNet 0.809 0.925 0.864 0.735 0.868 0.780 0.768 0.889

Thoracic Classifier 0.701 0.837 0.778 0.604 0.578 0.718 0.649 0.772

Table 1: Classification results of eight diseases.
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Figure 6: The density distribution of 8 thoracic disease according to the coordinates output by CAM.

a size resembling ones in the validation set the most. And then we

applied the mean width and height to each predicted centroid for

each distinct disease.

4.3 Using pertained weights vs train from
scratch

With ImageNet pre-trained weight 0.705

Without pre-train weigh 0.686

Table 2: Average classification results comparison between
models with pre-trained weight and without pre-trained
weight.

Table 2 shows two different classification results about whether

make use of pre-trained weights. We therefore did some exper-

iments on those settings. As shown in Table 2, model with pre-

trained parameters has a better performance.

Wang et al. (|P|+|N|)/|P| (|P|+|N|)/|N| 0.705

Rajpurkar et al. |N|/(|P|+|N|) |P|/(|P|+|N|) 0.601

without weight - - 0.694

Table 3: Comparison of models with different balancing fac-
tors.

Also, different weight balancing factors on loss function also

influence the classification performance. Table 3 shows the results

for different balancing factors.

4.4 Results
We applied the thoracic disease classifier on 8 diseases and pre-

sented the result in Table 1. As shown in this table, the proposed

classifier could achieve stable performance. For localization, we

showed the distrition in Figure 6. The density distribution is con-

sistent with Figure ??, which depicts the disease coordinate distri-

bution on radiograph produced by the radiologists labeled images.

5 CONCLUSIONS
In this paper, we model the thoracic disease classification task using

convolutional neural network and customized the specialty of Chest

X-ray dataset. Also, the localization of pathology is privided in

heatmap. The experimental results showed that the proposed model

4



can achieve a good performance. We conclude that: (1).CNN with

Transfer learning can classify the X-ray images with an accuracy

of around 70.5% based on this dataset; (2).Like pneumonia, other

thoracic disease detection and localization can also be automated.
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