
2020 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)

Coordinating Disaster Emergency Response with
Heuristic Reinforcement Learning

Zhou Yang∗, Long Nguyen†, Jiazhen Zhu‡, Zhenhe Pan†, Jia Li§, and Fang Jin∗
∗ Department of Statistics, George Washington University
† Department of Computer Science, Texas Tech University

‡ Department of Civil and Environmental Engineering, University of California, Davis
§ Walmart Global Tech

Email: zhou_yang@gwmail.gwu.edu, {long.nguyen, zhenpan, jia.li}@ttu.edu,
jiazhen.zhu@walmart.com, cejli@ucdavis.edu, fangjin@gwu.edu

Abstract—A crucial and time-sensitive task when any disaster
occurs is to rescue victims and distribute resources to the right
groups and locations. This task is challenging in populated urban
areas, due to a huge burst of help requests made in a very short
period. To improve the efficiency of the emergency response in
the immediate aftermath of a disaster, we propose a heuristic
multi-agent reinforcement learning scheduling algorithm, named
as ResQ, which can effectively schedule a rapid deployment
of volunteers to rescue victims in dynamic settings. The core
concept is to quickly identify victims and volunteers from social
network data and then schedule rescue parties with an adaptive
learning algorithm. This framework performs two key functions:
1) identify trapped victims and volunteers, and 2) optimize the
volunteers’ rescue strategy in a complex time-sensitive environ-
ment. The proposed ResQ algorithm can speed up the training
processes through a heuristic function which reduces the state-
action space by identifying a set of particular actions over
others. Experimental results showed that the proposed heuristic
multi-agent reinforcement learning based scheduling outperforms
several state-of-art methods, in terms of both reward rate and
response times.

I. INTRODUCTION

Natural disasters have always posed a critical threat to
human beings, often being accompanied by a major loss of life
and property damage. In recent years, we have witnessed more
frequent and intense natural disasters all over the world. In
2017 alone, there were multiple devastating natural disasters,
each resulting in hundreds of deaths. Hurricanes, flooding,
tornadoes, earthquakes and wildfires, were all active keywords
in 2017. To mitigate the impacts of disasters, it is important
to rapidly match the available rescue resources with disaster
victims who need help in the most efficient way, in order
to maximize the impact of the rescue effort with limited
resources. A key challenge in disaster rescues is to balance
the requests for help with the volunteers available to meet
that demand.

The adverse impacts of a disaster can be substantially miti-
gated if during the disaster accurate information regarding the
available volunteers can be gathered and victims’ locations can
be determined in a timely manner, enabling a well-coordinated
and efficient response. This is particularly apparent whenever
there is a huge burst of requests for limited public resources.

For example, when Hurricane Harvey made landfall on August
25, 2017, flooding parts of Houston, the 911 service was
overwhelmed by thousands of calls from victims in a very
short period. Since the phone line resource is limited, many
phone calls did not get through and victims turned to social
media to plead for help, posting requests with their addresses.
At the same time, many willing volunteers seeking to offer
help during the disaster were left idle as no one knew where
they should be sent. This case is illustrated in Figure 1,
along with a sample distribution of victims and volunteers
in Figure 2. In the case of a hurricane, a major challenge
is that without coordination, multiple volunteers with boats
may go to rescue the same victim while other victims have
to wait for extended times to be rescued. This mismatch
between victims and volunteers represents an enormous waste
of limited volunteer resources. It is therefore imperative to
improve the emergency services’ coordination to enable them
to efficiently share information, coordinate rescue efforts and
allocate resources more effectively, and offer guidance for
optimal resource allocation.

The problem of resource coordination has drawn consider-
able attention in the computer science community, and several
data mining frameworks have been developed to address
this problem. Previous researchers have primarily focused on
three approaches: supervised learning, adaptive methods, and
optimization-based method. Traditional supervised learning
models demand a dataset that is statistically large in order
to train a reliable model [1], [2], for example, by building
regression models to predict needs and schedule resources
accordingly [3]. Unfortunately, due to the unique nature of
resource management for disaster relief, it is generally im-
practical to model this using traditional supervised learning
models. Every disaster is unique and hence it makes no sense
to model one disaster relief problem by using the dataset
collected from other disasters; a realistic dataset for that
disaster can only be obtained when it occurs. This means
that traditional supervised learning is unable to solve the
highly individual resource management problems associated
with disaster relief efforts.

Other researchers have developed adaptive methods [4], [5]
and proposed adaptive systems [6] for resource allocation.IEEE/ACM ASONAM 2020, December 7-10, 2020
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Fig. 1: Sample tweets requesting for rescue and offering help.

Fig. 2: The distribution of volunteers and victims in the
Houston area on August 28, 2017.

However, a common limitation of the adaptive approach is
that the parameters in adaptive models change slowly and
hence converge slowly. An alternative is to model resource
coordination problems as simulation problems or optimization
problems which requires the process of modelling and tuning
repeatedly if any of the external environmental parameters
change.

The recent success achieved in applying machine learning
to challenging decision-making domains [7]–[9] suggests that
Reinforcement Learning (RL) is a promising method with
considerable potential.

In this paper, we aim to find an effective way to coordinate
the efforts of volunteers and enable them to reach disaster
victims as soon as possible. We have developed a novel
heuristic multi-agent reinforcement learning-based framework
to analyze the tweets and identify volunteers and victims,
along with their locations. Based on the information collected,
a resource coordination system can then allocate the volunteer
resources more efficiently. The resource coordination system is
implemented using heuristic multi-agent reinforcement learn-
ing since this approach offers a good way to address the
above dilemmas because of its unique characteristics. More
specifically:

• We build an efficient heuristic multi-agent reinforcement
learning framework for large-scale disaster rescue work
based on information gathered by mining social media
data. This study is one of the first that specifically
focuses on coordinating volunteers in disaster relief using
reinforcement learning.

• We propose a ResQ algorithm, which is capable of adapt-
ing dynamically as information comes in about volunteers
and victims’ situations and makes recommendations to
minimize the total distance travelled by all the volunteers
to rescue the maximum possible number of victims.

• Our proposed new disaster relief framework bridges the
gap when traditional emergency helplines such as 911 are
overwhelmed, thus benefiting both the disaster victims
and the non-Governmental organizations seeking to help
them.

• Last but not least, our proposed ResQ algorithm sig-
nificantly outperforms existing state-of-the-art methods,
reducing the computation times required considerably.
The effectiveness of the proposed method is validated
using a Hurricane Harvey related social media dataset
collected in August 2017 for the Houston area, Texas.

II. RELATED WORK

A. Disaster Relief with Social Media.

The most recent survey [10] pointed out that, the success
of a disaster relief and response process relies on timely and
accurate information regarding the status of the disaster, the
surrounding environment, and the affected people. There are
a large number of studies using social media data for disaster
relief [11]. Gao et al. [12] built a crowdsourcing platform to
provide emergency services during the 2010 Haiti earthquake,
such as handling food requests. They integrated the system
with crisis maps to help organizations to identify the location
where supplies are most needed. [13] compared the use of
social media and news in disaster event. [14], [15] forecasted
human needs to enhance preparedness in disaster response.
[16] proposed a normalization technique to enhance reasoning
over social media content. Zook et al. [17] demonstrated that
information technologies were the key means through which
individuals could contribute to relief efforts without being
physically present in Haiti. This example proved how to make
full use of volunteer resources by outsourcing tasks to remote
volunteers. Ashktorab et al. [18] introduced a Twitter-mining
tool to extract practical information for disaster relief workers
during natural disasters.

B. Multi-agent Reinforcement Learning

The research on Multi-agent Reinforcement Learning
(MARL) has proved to be very challenging. The exponen-
tial growth of the discrete state-action space gives rise to
a challenge for iterating over the state-action space. The
correlated returns of multiple agents make it difficult to max-
imize the returns independently. Several MARL goals have
been proposed to circumvent this problem. Hu and Wellman
proposed a framework where agents maintain Q-functions over



joint actions and perform updates based on agents’ learning
dynamics [19]. Powers and Shoham proposed to consider the
adaption to the changing behaviors of the other agents [20].
Other researchers also proposed to consider both stability and
adaption at the same time [21]–[23].

III. PROBLEM FORMULATION

A. Problem Formulation

Definition 3.1 (Rescue Scheduling Task): Let At denote the
set of assignments of victims to be rescued by volunteers at
time t. Given a set of volunteers Ut = {u1, u2, ...uMt

}, and a
set of victims Vt = {v1, v2, ...vNt

}, a rescue scheduling task is
to find a set of sequential assignments of volunteers to rescue
victims, such that all the victims are rescued with minimal
total cost. The total cost for such scheduling is the total time
spent on rescuing all the victims.

For the purpose of this study, we assume that victims are
taken to the nearest shelter after they have been rescued. We
calculate the total time for a rescue task as T = T (D)travel+
Tload+Tshelter, where D is the distance between the volunteer
and the victim, T (D)travel is the travel time that it takes for
the volunteer to reach the victim, Tload is the time to load the
victim(s) to the boat, and Tshelter is the time needed to carry
them to the nearest shelter. Since the loading time Tload and
the time to shelter Tshelter are constants in every scheduling
policy, we will not take the loading time Tload and the time
to shelter Tshelter into consideration.

Assignment Xt ∈ At may be written as an Nt×Mt matrix,
in which column i lists the victims that volunteer Ui will
rescue at time t, in order. Suppose there are Nt victims to be
rescued by Mt volunteers. We can now represent the rescue
scheduling result as a matrix Xt = (xij)NtMt

xij =

{
1 volunteer i is dispatched to rescue victim j,
0 volunteer i is not dispatched to rescue victim j.

where 1 ≤ i ≤ N , 1 ≤ j ≤M .
In this case, a volunteer rescues one victim at a time,

while a victim can only be rescued by at least one volunteer.
The mathematical model for the volunteer-victim problem is
defined as follows:

minimize
x

C =

T∑
t=1

Nt∑
i=1

Mt∑
j=1

dijxij

subject to
Nt∑
i=1

xij ≤ 1, j = 1, . . . ,Mt;

Mt∑
j=1

xij ≥ 1, i = 1, . . . , Nt;

xij ∈ {0, 1}.

where dij is the distance from volunteer i to victim j.

B. ResQ: Heuristic Multi-agent Reinforcement Learning
(MARL) in Rescue Scheduling

1) The setting of MARL: To tackle this rescue schedul-
ing problem, we can formulate the problem using multi-
agent reinforcement learning technique [24]. The agents are
volunteers who are willing to rescue disaster victims. The
victims represent the rewards and the environment is the place
where the disaster happened. This environment is represented
as a square-grid world, and the agents move within this
grid world to rescue the victims. In other words, this is
a Markov game G for N agents , which is denoted by a
tuple G =< N,S,A,P,R, γ >, where N , S, A, P , R, γ
are the number of agents, sets of states, joint action space,
transition probability function, reward function and discount
factor respectively. These are defined as follows:
• Agent: We consider a volunteer with a boat to be an

agent.
• State st ∈ S: A state sit of a volunteer i at time t in the

rescue scheduling problem is defined as the possible grid
location where he or she is located.

• Action at ∈ A= A1 × . . . × ANt
: a joint action at =

{ait}
Nt
1 denotes the allocation strategy of all available

volunteers at time t, where Nt is the number of available
agent at time t.

• Transition function P : S × A → [0, 1]: The state
transition probability p(st+1|st, at) gives the probability
of transiting to st+1 ∈ S given a joint action at ∈ Ai is
taken in the current state st ∈ S.

• Reward function Ri ∈ R = S × A → (−∞,+∞):
The i − th agent attempts to maximize its own ex-
pected discounted reward: Rt = E(rit + γrit+1 + ...) =

E(
∞∑
k=0

γkrit+k) = E(rit + γRt+1).

The goal of our disaster rescuing problem is to find the
optimal policy π∗ (a sequence of actions for agents) that
maximizes the total reward. The state value function V π(s) is
introduced to evaluate the performance of different policies.
V π(s) stands for the expected total reward with discount from
current state s on-wards with the policy π, which is equal to:

V π(s) = Eπ(Rt|S = st) = Eπ(rt + γV π(s′))

= rt +
∑
s′∈S

Pπ(s′|s)V π(s′). (1)

According to Bellman optimality equation [25], we have

V π(s) = max
a∈A
{rt(s, a) +

∑
s′∈S

γPπ(s′|s, a)V π(s′)}. (2)

Since the volunteers have to explore the environment in
order to find victims, they cannot observe the underlying state
of the environment. We treat this as a Partially Observable
Markov Decision Process (POMDP) [26]. A POMDP extends
the definition of Markov Decision Process (MDP). It is defined
by a set of states S denoting the environment setting for all
agents, a set of actions A1...AN and a set of observations
O1...ON for each agent. The state transition function P : S×



Algorithm 1: ResQ in Rescue Scheduling

let t=0, Qit=1;
initialize s0;
repeat

Observe current state St;
At = HeuristicActionSelection(St)
Every volunteer execute its action ait in At;
Observe Rit...Rt and ait...t

Qit+1(s, a
1...aN )← (1−at)Qi(s, a1...aN )+at{rit+

γπi(st+1)

N∑
j=1

Qjt (st+1
)πj(st+1)}

where (πi(st+1), π
j(st+1)) are cooperative strategies;

Let t=t+1;
until rescue complete;

Algorithm 2: Heuristic action selection
function HeuristicActionSelection (St)
Input : State St
Output: best found_action
Choose best actions A based on policy π(St) and Q
min_distance = ∞
for actionn ∈ A do

next_staten = perform_actions(action_n)
distance = HeuristicDistance(next_staten)
if distance ≤ min_distance then

min_distance = distance
found_action = actionn

end
end
return found_action

A1× ...×AN → S produces the next state with agents taking
the action following the policies πθi : O× Ai → [0, 1]. Each
agent i receives an observation correlated to the state oi : S→
Oi, and obtains a reward ri : S×Ai → R. Each agent i aims

to maximize the shared total expected return Ri =
N∑
i=1

T∑
t=0

γtrti

where γ is the discount factor and T is the horizon.
Several reinforcement learning algorithms have been pro-

posed to estimate the value of an action in various contexts.
These include the Q-learning, SARSA, and policy gradient
algorithm. Among them, the model-free Q-learning algorithm
stands out for its simplicity. In Q-learning, the algorithm
uses a Q-function to calculate the total reward, defined as
Q : S × A → R. Q-learning iteratively evaluates the optimal
Q-value function using backups:

Q(s, a)← Q(s, a) + α[r + γmaxa′Q(s′, a′)−Q(s, a)] (3)

where α ∈ [0, 1) is the learning rate and the term in the
brackets is the temporal-difference (TD) error. Convergence

Algorithm 3: Heuristic distance calculation
function HeuristicDistance (S)
Input : Current state S
Output: heuristic distance at state S
- compute distances from agents to victims
- sort distances in ascending
- pick pair matching agent to the shortest victim
- total_distance = sum distance from agents to selected

victims
return total_distance

to Qπ
∗

is guaranteed in the tabular case provided there is
sufficient state/action space exploration.

2) The Heuristic Function: The Q-learning requires a num-
ber of trials in order to learn and perform consistently, which
will increase the total time to generate a rescue plan. In order
to address this problem, heuristic-based algorithms have been
proposed, e.g. in Robotic Soccer game [27]. For the current
problem, we propose a heuristic based Q-learning: ResQ. In
our problem, the locations of volunteers and victims will
be estimated via tweets’ geolocation as described in Section
IV-B. We will then incorporate this information as a heuristics
function in the learning process. When determining actions for
volunteers, besides choosing the optimal Q-value as mentioned
earlier, we also prioritize the actions that result in the shortest
distance to the victims. The heuristics function is a mapping
H : S×A→ R where S is the current state, A is the action to
be performed, and R is a real number representing the distance
of volunteers to the victims. If after performing an action a in
A, the agent is at row ra and column ca of the grid, and its
goal is the victim positioned at row rv and column cv , then
the heuristic distance h is calculated as:

h = |ra − rv|+ |ca − cv| (4)

Our proposed ResQ algorithm for rescue activity is illus-
trated in Algorithm 1, 2 and 3.

IV. EXPERIMENTS AND RESULTS

A. Datasets

Tweets were collected from Aug 23, 2017, until Sept 5,
2017, using the Twitter API, covering the whole course of
Hurricane Harvey and its immediate aftermath. The raw data
for each day includes about two million tweets, and every
tweet has 36 attributes including, among other information,
the geographic location, its geographic coordinates, text, and
the user profile. The raw data was cleaned by removing tweets
that were not tweeted from the United States. Texas state has
the largest total number of tweets with scaling the statistics
to a range[1, 1000], and the original total number of tweets is
173,315.

B. Identifying Victims and Volunteers

Victims and volunteers were identified using a series of
classifiers. We first designed a classifier to filter Harvey related



TABLE I: Tweet statistics from Aug 23, 2017, to Sept 5, 2017.

Total tweet 25,945,502 Volunteer tweet 13,953

Harvey tweet 173,315 Victim tweet 16,535

Fig. 3: Time series of victim and volunteer tweet counts.

tweets from all the tweets. In this context, a Harvey tweet
refers to a post talking about Hurricane Harvey or related
to Hurricane Harvey. In these Harvey tweets, we further
developed two classifiers to identify tweets from victims and
volunteers. Here, victim tweets are those from victims (or
their friends) requesting for help, including retweets. Volunteer
tweets are from volunteers who have a boat and are willing
to help. All of these classifiers were implemented based on
a Support Vector Machine (SVM). In every classifier, 2, 000
tweets were manually labeled, with 80% of the tweets being
used for training, and the rest for testing. A five-fold cross-
validation method was then applied to ensure the classification
results were trustworthy. To obtain a reliable classification
result, we compared Logistic Regression, K-Nearest Neighbor
(KNN), CART, and SVM. Evaluation metrics such as precision
(positive predictive value), recall, F-measure, and accuracy
were calculated to evaluate the performance, as shown in
Table II.

1) Victim and Volunteer Time Series: As shown in Figure 3,
we tracked the victims and volunteers tweets time series to
monitor the impact of Hurricane Harvey and rescue activities.
Initially, when Hurricane Harvey formed into a tropical de-
pression on Aug 23, not much attention was observed from
Twitter in the U.S. When Harvey made landfall near the Texas
Gulf Coast on Aug 25, there was a burst of victims’ tweets.
With the increasing of victims requesting help, the number
of volunteers also increased sharply and reached a climax on
Aug 28. Meanwhile, victims tweets reached a peak on Aug
29. With the leaving of Harvey and system-wide rescuing, both
the victims’ tweets and volunteers’ tweets dropped gradually.
Generally, the number of volunteers’ tweets is always lower
than the victims’ tweets.

2) Geocoding: To geographically locate victims and vol-
unteers, we designed a simple tool to extract their geoloca-
tions. Since geographic coordinates are included in both of
tweets from GPS-enabled devices and tweets giving specific

Geolocation Extraction

Mapping

Integrate with RL environment

My dad and I have a boat 
and are willing to help those 
in need, etc.

The geolocation of volunteers 
and victims is mapped into the 
real map. The red marker 
denotes the victims and the blue 
marker denotes the volunteers.

The map is divided into squares 
upon which the reinforcement 
learning enviroment will be built. 

Family w/elderly, disabled & 
babies-btwn. McLean & Fite 
St.-Pearland, TX 832-425-
****.

McLean & Fite 
St.-Pearland, TX

(29.863347,-94.84732),
(29.896266,-94.84732),
(29.896266,-94.78035),
(29.863347,-94.78035)

Regular 

expression

tweet 

attribute

address to

coordinates

mapping

gridding

Fig. 4: Reinforcement learning environment transformation.

addresses, we directly used the address or coordinate to locate
the victims or volunteers. Otherwise, we combined alternative
sources of information to infer their locations, such as the
self-reported location string in the user’s profile metadata, or
by analyzing the tweet’s content. With the help of the World
Gazetteer (http://archive.is/srm8P) database, we were able to
look up location names and geographic coordinates.

C. Experiment Setting

We model the problem of rescue scheduling using a
heuristic fully cooperative multi-agent reinforcement learning
method. Multi-agent means that we use multiple agents to
represent multiple volunteers. The number of agents depends
on the number of volunteers identified in the volunteer tweet
classification process for each day. Similarly, we assume that
the victims are immobile learning targets because victims are
trapped. Since volunteers aim to rescue all the victims as soon
possible, the goal of all agents is to reach all of their targets
with the lowest cost (shortest distance) and maximize the total
reward.

In the following sections, we describe how the disaster grid
environment is implemented and what actions volunteers can
perform in the course of their rescuing activities.

1) The Grid Environment Identification: The process of
environment building is illustrated in Figure 4. In actual
disaster relief operations, the whole city of Houston is the
activity space for volunteers, and since a volunteer can go
in any direction, the combination of space and direction will



TABLE II: Tweets classification results.

Harvey Classification Victim Classification Volunteer Classification
Precision Recall F_ measure Accuracy Precision Recall F_ measure Accuracy Precision Recall F_ measure Accuracy

Log. Regr. 0.8 0.7273 0.7619 0.8646 0.8437 0.5510 0.6667 0.7127 0.9583 0.6216 0.7541 0.8170
KNN 1.0 0.2105 0.3478 0.7580 1.0 0.8414 0.9139 0.9172 1.0 0.6129 0.76 0.8248
CART 1.0 0.6364 0.7778 0.8919 1.0 0.9795 0.9896 0.9893 1.0 0.7567 0.8645 0.8902
SVM 0.8947 0.9444 0.9189 0.9516 0.9146 0.9868 0.9493 0.9490 0.9146 0.9868 0.9493 0.9490

(a) Scatter Matrix Reward

(b) Scatter Matrix Time Step

(c) Heatmap Reward (d) Box Plot Reward

Fig. 5: Comparison of the performance of different algorithms.

be infinite. According to our statistics, 95% of the requests
for help during the hurricane come from a fixed downtown
area. For simplicity, our model is based on a quasi-square area
defined by four position coordinates, which are (29.422486,-
95.874178), (30.154665,-95.874178), (30.154665,-95.069705)
and (29.422486,-95.069705). This square region has a width
of 50 miles. For simplicity, the rectangular region is mapped
into a 25 by 25 grid, with each grid representing a 4-square-
mile area in the real world. By applying this simple mapping
to convert the actual map to a virtual grid, we can transform
the real world continuous state space to a more manageable
discrete state space, and hence significantly reduce the state
space complexity.

The position coordinates of the victims and volunteers are

extracted every hour following the processes described in
the Figure 4. This hourly updating strategy will keep our
system updated with the number of available volunteers to be
scheduled to rescue the remaining victims, and the number of
trapped victims and their positions is also updated. From our
observations, For victim tweets that contain the victim’s ad-
dress and phone number, such as McLean & Fite St.-Pearland,
TX 832-425-**** , we can extract the address and converted
their position coordinates. For volunteer tweets that do not
include the volunteers’ address, we can use the geocoding
tool as described in section IV-B to extract geographical
information from the raw tweet. Once a victim is rescued,
we assume the victim is sent to the nearest shelter, and update
the numbers and coordinates accordingly.



D. Disaster Relief Coordination Performance

1) Baseline Models: We used the following classical search
methods to compare their performances with that of our
proposed technique:

a) Random Walk: In this search policy, the agent will
randomly walk around the grid and search for any victim they
come across along the way. The behavior is random without
any other knowledge of the environment.

b) Greedy Best First Search: A greedy best first search
offers volunteers a heuristic distance estimation to the victims.
Volunteers begin by rescuing the closest victims first and then
move on to the further ones sequentially.

c) Rule-based Search: A rule-based search computes
action rules by utilizing the probability of taking an action in a
grid cell. The action with highest probability are then selected
for the next action. This probability is computed from the last
average rewards gained in those cells during training episodes
controlled by the random walk algorithm. In particular, if
V (t, j) is the averaged reward value at time t of the grid cell
gj , and the volunteer takes action at in order to move to grid
cell gj+1, the probability of taking action at at the grid cell
gj is:

p(at = [gj , gj+1]) =
V (t+ 1, j)

V (t+ 1, j) + V (t+ 1, j + 1)
(5)

d) Value Iteration: This algorithm works by dynami-
cally updating the value table based on a policy evaluation
such as that described by [28]. The allocation policy is
computed based on the new value table,

e) Reinforcement Learning: This is traditional rein-
forcement learning technique where there is no heuristics
consideration in action selection. The technique has the same
settings such as action, state and reward space compared with
our proposed heuristic reinforcement learning.

2) Evaluation Metrics: We define an episode as the set of
attempts made by all volunteers to successfully rescue all the
victims. Hence, our key metrics for measuring the performance
of rescue activities are the average episode time, average
episode reward, average reward rate and average rescuing
cost.

a) Average episode time: is the average total time steps
required to rescue all the victims in all executed episodes.
Each time step is equivalent to one step action (from one cell
to another near-by cell) taken by all the available volunteers.

b) Average episode reward: is the average cumulative
reward that all volunteers earn in each episode of rescuing.

c) Average reward rate: is the ratio between the average
episode reward and average episode time.
reward_rate =

∑N
i=1 rewardi∑N
i=1 timei

d) Average rescuing cost: represents the total time step
cost to earn one unit of reward. This is the inverse of the
reward rate. rescuing_cost = 1

reward_rate
Notice that the model includes the option to have multiple

episodes in order to allow us to measure the average per-
formance achieved and the capacity to learn for each rescue

TABLE III: Rescue performance comparison. Bold values
represent best performance.

Time Reward Reward Rate Rescuing Cost

Random Walk 17.4 167.2 9.6 0.104

Greedy B.F.S 9.6 182.7 19.03 0.053

Rule-based 15.9 170.2 10.70 0.093

Value Iteration 14.1 173.7 12.32 0.081

Reinforcement Learning 5.4 172.0 31.85 0.031

Heuristic R. L. 5.0 189.7 37.9 0.026

policy. Algorithm 1 presents the calculation of the total time
steps and total rewards per episode.

3) Results and Comparisons: In this work, a heuristic
multi-agent reinforcement learning model for disaster relief
is trained and evaluated in OpenAI Gym [29]. Unlike the
standard reinforcement learning settings used for simulations,
our experimental environment setting is based on the real-
world geographical positions of tweets. Here, a volunteer is
formulated as taking action in an environment and receiving
rewards and observation at every time step. The training of
the agent stops once the policies of volunteers converge. The
main purpose is to minimize the amount of time needed to
rescue all the victims in the target environment.

For these experiments, we transform the geographical distri-
bution of tweets into a grid and set up a centralized communi-
cation environment, which consists of N volunteers and M vic-
tims in a two-dimensional grid with discrete space and discrete
time. The process of extracting geographical information from
volunteers and victims is illustrated in Figure 4. Volunteers
may take actions in the environment and communicate with
the remote central server. They will be assigned a penalty if
they go off the grid and a reward if they reach the victims
they are to rescue.

We compared the experimental performance of the proposed
ResQ algorithm with Random walk, Greedy best first search,
Rule-based search, Value iteration, and a traditional Reinforce-
ment Learning method. Figure 5 presents the process of each
algorithm’s performance within 2000 episode (path from initial
to a terminal state). In Figure 5(a) and Figure 5(b), we compare
the total rewards and total time steps per episode with each
strategy. The ResQ quickly converges to stable states after
the first 24 episodes of training. Once ResQ converged, it
constantly outperforms all other approaches. As a comparison,
the reinforcement learning technique also performs well after
convergence. However, it requires a long time for convergence
(208 episodes in current experiment) and the average reward
over the entire time period is lower compared to the ResQ.
The greedy B.F.S strategy performs consistently over the time,
shown as points around constant lines. This is not surprising
because with this strategy the agents always choose to reach
the closest victims first, which is independent of other factors
in the rescuing environment. Overall, the reward of greedy
B.F.S strategy is less than the ResQ, while its time steps



outperform the ResQ during the latter’s training phase. The
Random walk approach leads to the lowest overall reward
as well as the highest completion time per episode, and the
performance has a large variation across different episodes.
Ruled based and Value iteration are even worse compared
to our proposed ResQ technique. Figure5(c) and Figure5(d)
respectively show the heatmap of the reward distribution and
its corresponding box plot. We clearly see that, during the total
2000 testing episodes, the ResQ has the most of its rewards
above 190, while other methods have significantly less number
of rewards in this category.

Table III gives a summary of each algorithm’s total time,
total reward, reward rate, and rescuing cost. The result clearly
shows that the ResQ has the best overall reward score, the
shortest completion time, the highest reward rate, and the
lowest rescuing cost rate. In particular, the Greedy B.F.S.
and the Reinforced Learning method respectively have the
reward and time performance close to the proposed method.
Nonetheless, the proposed Heuristic reinforcement learning
evidently outperforms these methods when the two metrics
are considered simultaneously.

V. DISCUSSION

This paper presents a novel algorithm designed to develop
a better response to victims’ requests for assistance during
disasters, along with a case study using Twitter data collected
during Hurricane Harvey in 2017. This work is one of the
first attempts to formulate the large-scale disaster rescue prob-
lem as a feasible heuristic multi-agent reinforcement learning
problem using massive social media data. With the proposed
method, we can train classifiers to extract the victim and
volunteer information from tweets and transform the data
for use in a reinforcement learning environment. Our key
contribution is the design of a heuristic multi-agent reinforce-
ment learning scheduling policy that simultaneously schedules
multiple volunteers to rescue disaster victims quickly and
effectively. The experimental results showed that the heuristic
multi-agent reinforcement learning algorithm could respond
to dynamic requests and achieve an optimal performance over
space and time. Also, the results showed that this approach
could match volunteers and victims for faster disaster relief
and better use of limited public resources. The proposed
framework for disaster exploration and relief recommendation
is significant in that it provides a new disaster relief channel
that can serve as a backup plan when traditional helplines are
overloaded.

VI. ACKNOWLEDGMENT

This work was supported by the U.S. National Science
Foundation (NSF) under Grant CNS-1737634.

REFERENCES

[1] X. Zhu, “Semi-supervised learning literature survey,” world, 2005.
[2] Z. Yang, L. H. Nguyen, J. Stuve, G. Cao, and F. Jin, “Harvey flooding

rescue in social media,” in 2017 IEEE Big Data (Big Data). IEEE,
2017, pp. 2177–2185.

[3] Z. Gong and et al., “Press: Predictive elastic resource scaling for cloud
systems,” in 2010 CNSM, 2010, pp. 9–16.

[4] W. Song and et al, “Adaptive resource provisioning for the cloud using
online bin packing,” IEEE Transactions on Computers, 2014.

[5] W. Iqbal, M. N. Dailey, D. Carrera, and P. Janecek, “Adaptive resource
provisioning for read intensive multi-tier applications in the cloud,”
Future Generation Computer Systems, 2011.

[6] Y. Jiang and et al., “Asap: A self-adaptive prediction system for instant
cloud resource demand provisioning,” in 2011 IEEE 11th ICDM, 2011.

[7] H. Lu and et al., “Motor anomaly detection for unmanned aerial vehicles
using reinforcement learning,” IEEE internet of things journal, pp. 2315–
2322, 2018.

[8] A. Nagabandi and et al., “Neural network dynamics for model-based
deep reinforcement learning with model-free fine-tuning,” in 2018 IEEE
ICRA. IEEE, 2018, pp. 7559–7566.

[9] A. Nair and et al., “Overcoming exploration in reinforcement learning
with demonstrations,” in 2018 IEEE ICRA. IEEE, 2018, pp. 6292–6299.

[10] T. Nazer and et al., “Intelligent disaster response via social media
analysis a survey,” ACM SIGKDD Explorations Newsletter, vol. 19,
no. 1, pp. 46–59, 2017.

[11] M. Jamali, A. Nejat, S. Ghosh, F. Jin, and G. Cao, “Social media
data and post-disaster recovery,” International Journal of Information
Management, vol. 44, pp. 25–37, 2019.

[12] H. Gao, G. Barbier, and R. Goolsby, “Harnessing the crowdsourcing
power of social media for disaster relief,” IEEE Intelligent Systems,
vol. 26, no. 3, pp. 10–14, 2011.

[13] H. Du, L. Nguyen, Z. Yang, H. Abu-Gellban, X. Zhou, W. Xing, G. Cao,
and F. Jin, “Twitter vs news: Concern analysis of the 2018 california
wildfire event,” in 2019 IEEE 43rd Annual Computer Software and
Applications Conference (COMPSAC), vol. 2. IEEE, 2019, pp. 207–
212.

[14] L. Nguyen, Z. Yang, J. Li, Z. Pan, G. Cao, and F. Jin, “Forecasting peo-
ple’s needs in hurricane events from social network,” IEEE Transactions
on Big Data, 2019.

[15] L. H. Nguyen, S. Jiang, H. Abu-gellban, H. Du, and F. Jin, “Nipred:
Need predictor for hurricane disaster relief,” in Proc. of the 16th SSTD,
2019, pp. 190–193.

[16] L. H. Nguyen, A. Salopek, L. Zhao, and F. Jin, “A natural language
normalization approach to enhance social media text reasoning,” in 2017
IEEE Big Data. IEEE, 2017, pp. 2019–2026.

[17] M. Zook and et al., “Volunteered geographic information and crowd-
sourcing disaster relief: A case study of the haitian earthquake,” World
Medical & Health Policy, pp. 7–33, 2010.

[18] Z. Ashktorab, C. Brown, M. Nandi, and A. Culotta, “Tweedr: Mining
twitter to inform disaster response,” in Proc. ISCRAM’14. ISCRAM
Association, 2014.

[19] J. Hu and M. P. Wellman, “Nash q-learning for general-sum stochastic
games,” Journal of Machine Learning Research, vol. 4, pp. 1039–1069,
2003.

[20] R. Powers and Y. Shoham, “New criteria and a new algorithm for
learning in multi-agent systems,” in Advances in Neural Information
Processing Systems 17, 2005.

[21] M. Bowling, “Convergence and no-regret in multiagent learning,” in
Advances in Neural Information Processing Systems 17. MIT Press,
2005, pp. 209–216.

[22] M. Bowling and M. Veloso, “Rational and convergent learning in
stochastic games,” in Proc. IJCAI’01, ser. IJCAI’01, 2001, pp. 1021–
1026.

[23] M. L. Littman, “Value-function reinforcement learning in markov
games,” Cognitive Systems Research, vol. 2, no. 1, pp. 55 – 66, 2001.

[24] S. Liang, Z. Yang, F. Jin, and Y. Chen, “Data centers job scheduling
with deep reinforcement learning,” in PAKDD. Springer, 2020, pp.
906–917.

[25] R. Bellman, Dynamic Programming, 1st ed. Princeton University Press,
1957.

[26] M. L. Puterman, Markov Decision Processes: Discrete Stochastic Dy-
namic Programming, 1st ed. John Wiley & Sons, Inc., 1994.

[27] R. A. Bianchi, C. H. Ribeiro, and A. H. R. Costa, “Heuristic selection
of actions in multiagent reinforcement learning.” in IJCAI, 2007, pp.
690–695.

[28] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press Cambridge, 1998, vol. 1.

[29] G. Brockman and et al., “Openai gym,” 2016.


