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Abstract. Efficient job scheduling on data centers under heterogeneous
complexity is crucial but challenging since it involves the allocation of
multi-dimensional resources over time and space. To adapt the com-
plex computing environment in data centers, we proposed an innovative
Advantage Actor-Critic (A2C) deep reinforcement learning based ap-
proach called A2cScheduler for job scheduling. A2cScheduler consists of
two agents, one of which, dubbed the actor, is responsible for learning
the scheduling policy automatically and the other one, the critic, re-
duces the estimation error. Unlike previous policy gradient approaches,
A2cScheduler is designed to reduce the gradient estimation variance and
to update parameters efficiently. We show that the A2cScheduler can
achieve competitive scheduling performance using both simulated work-
loads and real data collected from an academic data center.

Keywords: Job scheduling · Cluster scheduling · Deep reinforcement
learning · Actor critic.

1 Introduction

Job scheduling is a critical and challenging task for computer systems since it
involves a complex allocation of limited resources such as CPU/GPU, memory
and IO among numerous jobs. It is one of the major tasks of the scheduler in
a computer system’s Resource Management System (RMS), especially in high-
performance computing (HPC) and cloud computing systems, where inefficient
job scheduling may result in a significant waste of valuable computing resources.
Data centers, including HPC systems and cloud computing systems, have be-
come progressively more complex in their architecture [15], configuration(e.g.,
special visualization nodes in a cluster) [6] and the size of work and workloads
received [3], all of which increase the job scheduling complexities sharply.

The undoubted importance of job scheduling has fueled interest in the schedul-
ing algorithms on data centers. At present, the fundamental scheduling method-
ologies [18], such as FCFS (first-come-first-serve), backfilling, and priority queues
that are commonly deployed in data centers are extremely hard and time-
consuming to configure, severely compromising system performance, flexibility
and usability. To address this problem, several researchers have proposed data-
driven machine learning methods that are capable of automatically learning the
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scheduling policies, thus reducing human interference to a minimum. Specifically,
a series of policy based deep reinforcement learning approaches have been pro-
posed to manage CPU and memory for incoming jobs [10], schedule time-critical
workloads [8], handle jobs with dependency [9], and schedule data centers with
hundreds of nodes [2].

Despite the extensive research into job scheduling, however, the increasing
heterogeneity of the data being handled remains a challenge. These difficulties
arise from multiple issues. First, policy gradient DRL method based scheduling
method suffers from a high variance problem, which can lead to low accuracy
when computing the gradient. Second, previous work has relied on used Monte
Carlo (MC) method to update the parameters, which involved massive calcula-
tions, especially when there are large numbers of jobs in the trajectory.

To solve the above-mentioned challenges, we propose a policy-value based
deep reinforcement learning scheduling method called A2cScheduler, which can
satisfy the heterogeneous requirements from diverse users, improve the space ex-
ploration efficiency, and reduce the variance of the policy. A2cScheduler consists
of two agents named actor and critic respectively, the actor is responsible for
learning the scheduling policy and the critic reduces the estimation error. The
approximate value function of the critic is incorporated as a baseline to reduce
the variance of the actor, thus reducing the estimation variance considerably [14].
A2cScheduler updates parameters via the multi-step Temporal-difference (TD)
method, which speeds up the training process markedly compared to conven-
tional MC method due to the way TD method updates parameters. The main
contributions are summarized as below:

1. This represents the first time that A2C deep reinforcement has been suc-
cessfully applied to a data center resource management, to the best of the
authors’ knowledge.

2. A2cScheduler updates parameters via multi-step Temporal-difference (TD)
method which speeds up the training process comparing to MC method
due to the way TD method updates parameters. This is critical for the real
world data center scheduling application since jobs arrive in real time and
low latency is undeniably important.

3. We tested the proposed approach on both real-world and simulated datasets,
and results demonstrate that our proposed model outperformed many exist-
ing widely used methods.

2 Related Work

Job scheduling with deep reinforcement learning Recently, researchers
have tried to apply deep reinforcement learning on cluster resources manage-
ment. A resource manager DeepRM was proposed in [10] to manage CPU and
memory for incoming jobs. The results show that policy based deep reinforce-
ment learning outperforms the conventional job scheduling algorithms such as
Short Job First and Tetris [4]. [8] improves the exploration efficiency by adding
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Fig. 1. A2cScheduler job scheduling framework.

baseline guided actions for time-critical workload job scheduling. [17] discussed
heuristic based method to coordinate disaster response. Mao proposed Decima
in [9] which could handle jobs with dependency when graph embedding technique
is utilized. [2] proved that policy gradient based deep reinforcement learning can
be implemented to schedule data centers with hundreds of nodes.

Actor-critic reinforcement learning Actor-critic algorithm is the most pop-
ular algorithm applied in the reinforcement learning framework [5] which falls
into three categories: actor-only, critic-only and actor-critic methods [7]. Actor-
critic methods combine the advantages of actor-only and critic-only methods.
Actor-critic methods usually have good convergence properties, in contrast to
critic-only [5]. At the core of several recent state-of-the-art Deep RL algorithms
is the advantage actor-critic (A2C) algorithm [11]. In addition to learning a
policy (actor) π(a|s; θ), A2C learns a parameterized critic: an estimate of value
function vπ(s), which then uses both to estimate the remaining return after k
steps, and as a control variate (i.e. baseline) that reduces the variance of the
return estimates [13].

3 Method and Problem Formulation

In this section, we first review the framework of A2C deep reinforcement learning,
and then explain how the proposed A2C based A2cScheduler works in the job
scheduling on data centers. The rest part of this section covers the essential
details about model training.

3.1 A2C in Job Scheduling

The Advantage Actor-critic (A2C), which combines policy based method and
value based method, can overcome the high variance problem from pure policy
gradient approach. The A2C algorithm is composed of a policy π (at|st; θ) and a
value function V (st;w), where policy is generated by policy network and value
is estimated by critic network. The proposed the A2cScheduler framework is
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shown in figure 1, which consists of an actor network, a critic network and the
cluster environment. The cluster environment includes a global queue, a backlog
and the simulated machines. The queue is the place holding the waiting jobs.
The backlog is an extension of the queue when there is not enough space for
waiting jobs. Only jobs in the queue will be allocated in each state.

The setting of A2C

– Actor: The policy π is an actor which generates probability for each possible
action. π is a mapping from state st to action at. Actor can choose a job
from the queue based on the action probability generated by the policy π.
For instance, given the action probability P = {p1, . . . , pN} for N actions, pi
denotes the probability that action ai will be selected. If the action is chosen
according to the maximum probability (action = arg maxi∈[0,N ],i∈N+ pi), the
actor acts greedily which limits the exploration of the agent. Exploration
is allowed in this research. The policy is estimated by a neural network
π(a|s, θ), where a is an action, s is the state of the system and θ is the
weights of the policy network.

– Critic: A state-value function v(s) used to evaluate the performance of the
actor. It is estimated by a neural network v̂(s,w) in this research where s is
the state and w is the weights of the value neural network.

– State st ∈ S: A state st is defined as the resources allocation status of the
data center including the status of the cluster and the status of the queue
at time t. The states S is a finite set. Figure 2 shows an example of the
state in one time step. The state includes three parts: status of the resources
allocated and the available resources in the cluster, resources requested by
jobs in the queue, and status of the jobs waiting in the backlog. The scheduler
will only schedules jobs in the queue.

– Action at ∈ A: An action at = {at}N1 denotes the allocation strategy of
jobs waiting in the queue at time t, where N is the number of slots for
waiting jobs in the queue. The action space A of an actor specifies all the
possible allocations of jobs in the queue for the next iteration, which gives
a set of N + 1 discrete actions represented by {∅, 1, 2, . . . , N} where at = i(
∀i ∈ {1, . . . , N}) means the allocation of the ith job in the queue and at = ∅
denotes a void action where no job is allocated.

– Environment: The simulated data center contains resources such as CPUs,
RAM and I/O. It also includes resource management queue system in which
jobs are waiting to be allocated.

– Discount Factor γ: A discount factor γ is between 0 and 1, and is used to
quantify the difference in importance between immediate rewards and future
rewards. The smaller of γ, the less importance of future rewards.

– Transition function P : S × A→ [0, 1]: Transition function describes the
probabilities of moving between current state to the next state. The state
transition probability p(st+1|st, at) represents the probability of transiting
to st+1 ∈ S given a joint action at ∈ A is taken in the current state st ∈ S.

– Reward function r ∈ R = S × A → (−∞,+∞): A reward in the data
center scheduling problem is defined as the feedback from the environment
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Fig. 2. An example of the tensor representation of a state. At each iteration, the deci-
sion combination of number of jobs will be scheduled is 2Totaljobs , which has exponen-
tial growth rate. We simplify the case by selecting a decision from decision domain =
{0, 1, . . . , N}, where N is a fixed hyper-parameter, decision = i denotes select ith job,
and decision = 0 denotes no job will be selected.

when the actor takes an action at a state. The actor attempts to maximize
its expected discounted reward:

Rt = E(rit + γrit+1 + ...) = E(
∞∑
k=0

γkrit+k) = E(rit + γRt+1).

The agent reward at time t is defined as rt = − 1
Tj

, where Tj is the runtime

for job j.

The goal of data center job scheduling is to find the optimal policy π∗ (a
sequence of actions for agents) that maximizes the total reward. The state value
function Qπ(s, a) is introduced to evaluate the performance of different policies.
Qπ(s, a) stands for the expected total reward with discount from current state
s on-wards with the policy π, which is equal to:

Qπ(st, at) =Eπ(Rt|st, at) = Eπ(rt + γQπ(s′, a′))

=rt + γ
∑
s′∈S

Pπ(s′|s)Qπ(s′, a′) (1)

, where s′ is the next state, and a′ is the action for the next time step.

Function approximation is a way for generalization when the state and/or
action spaces are large or continuous. Several reinforcement learning algorithms
have been proposed to estimate the value of an action in various contexts such
as the Q-learning [16] and SARSA [12]. Among them, the model-free Q-learning
algorithm stands out for its simplicity [1]. In Q-learning, the algorithm uses a
Q-function to calculate the total reward, defined as Q : S × A→ R. Q-learning
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iteratively evaluates the optimal Q-value function using backups:

Q(s, a) = Q(s, a) + α[r + γmaxa′Q(s′, a′)−Q(s, a)] (2)

, where α ∈ [0, 1) is the learning rate and the term in the brackets is the temporal-
difference (TD) error. Convergence to Qπ

∗
is guaranteed in the tabular case

provided there is sufficient state/action space exploration.

The loss function for critic Loss function of the critic is utilized to update
the critic network parameters.

L(wi) = E(r + γmaxa′Q(s′, a′;wi−1)−Q(s, a;wi))
2, (3)

where s′ is the state encountered after state s. Critic update the parameters of
the value network by minimizing critic loss in equation 3.

Advantage actor-critic The critic updates state-action value function pa-
rameters, and the actor updates policy parameters, in the direction suggested
by the critic. A2C updates both the policy and value-function networks with the
multi-step returns as described in [11]. Critic is updated by minimizing the loss
function of equation 3. Actor network is updated by minimizing the actor loss
function in equation

L(θ′i) = ∇θ′ log π (at|st; θ′)A (st, at; θ, wi) (4)

, where θi is the parameters of the actor neural network and wi is the parameters
of the critic neural network. Note that the parameters θi of policy and wi of value
are distinct for generality. Algorithm 1 presents the calculation and update of
parameters per episode.

3.2 Training algorithm

The A2C consists of an actor and a critic, and we implement both of them using
deep convolutional neural network. For the Actor neural network, it takes the
afore-mentioned tensor representation of resource requests and machine status
as the input, and outputs the probability distribution over all possible actions,
representing the jobs to be scheduled. For the Critic neural network, it takes as
input the combination of action and the state of the system, and outputs the a
single value, indicating the evaluation for actor’s action.

4 Experiments

4.1 Experiment Setup

The experiments are executed on a desktop computer with two RTX-2080 GPUs
and one i7-9700k 8-core CPU. A2cScheduler is implemented using Tensorflow
framework. Simulated jobs arrive online in Bernouli process. A piece of job trace
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Algorithm 1 A2C reinforcement learning scheduling algorithm

Input: a policy parameterization π(a|s, θ)
Input: a state-value function parameterization v̂(s,w)
Parameters: step sizes αθ > 0, αw > 0
Initialization: policy parameter θ ∈ Rd

′
and state-value function weights w ∈

Rd( e.g. , to 0.001)
Output: The scheduled sequence of jobs[1..n]
Loop forever (for each episode):

Initialize S (state of episode)
Loop while S is not terminal (for each time step of episode):

A ∼ π(·|S, θ)
Take action A, observe state S′, reward R
δ ← R+ γv̂ (S′,w)− v̂(S,w) ( If S′ is terminal, then v̂ (S′,w)

.
= 0)

w← w + αwδ∇v̂(S,w)
θ ← θ + αθδ∇ lnπ(A|S, θ)
S ← S′

Table 1. Performance comparison when model converged.

Job Rate
0.9 0.8

Type Random Tetris SJF A2cScheduler Random Tetris SJF A2cScheduler

Slowdown 5.50±0.00 2.90±0.00 1.81±0.00 2.03±0.01 6.2±0.00 3.25±0.00 2.52±0.00 2.30±0.05

Complete time 12.51±0.00 8.61±0.00 7.42±0.00 7.20±0.01 14.21±0.00 8.50±0.00 6.50±0.00 6.20±0.04

Waiting time 8.22±0.00 3.32±0.00 2.21±0.00 2.20±0.01 9.15±0.00 2.10±0.00 1.93±0.00 2.12±0.005

from a real data center is also tested. CPU and Memory are the two kinds of
resources considered in this research.

The training process begins with an initial state of the data center. At each
time step, a state is passed into the policy network π. An action is generated
under policy π. A void action is made or a job is chosen from the global queue and
put into the cluster for execution. Then a new state is generated and some reward
is collected. The states, actions, policy and rewards are collected as trajectories.
Meanwhile, the state is also passed into the value network to estimate the value,
which used to evaluate the performance of the action. Actor in A2cScheduler
learns to produce resource allocation strategies from experiences after epochs.

Table 2. Performance comparison when model converged.

Job Rate
0.7 0.6

Type Random Tetris SJF A2cScheduler Random Tetris SJF A2cScheduler

Slowdown 5.05±0.00 3.32±0.00 2.14±0.00 1.91±0.02 3.22±0.00 1.82±0.00 1.56±0.00 1.36±0.04

Complete time 13.15±0.00 10.02±0.00 7.66±0.00 6.10±0.03 10.0±0.00 5.50±0.00 5.50±0.00 5.50±0.04

Waiting time 8.32±0.00 4.51±0.00 2.53±0.00 1.82±0.03 8.32±0.00 1.48±0.00 1.48±0.00 1.50±0.003
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4.2 Evaluation Metrics

Reinforcement learning algorithms, including A2C, have been mostly evaluated
by converging speed. However, these metrics are not very informative in domain-
specific applications such as scheduling. Therefore, we present several evaluation
metrics that are helpful for access the performance of the proposed model.

Given a set of jobs J = {j1, . . . , jN}, where ith job is associated with arrival

time tai , finish time tfi , and execution time tei .

Average job slowdown The slowdown for ith job is defined as si =
tfi−t

a
i

tei
= ci

ti
,

where ci = tfi − tai is the completion time of the job and ti is the duration of the

job. The average job slowdown is defined as savg = 1
N

n∑
i=1

tfi−t
a
i

tei
= 1

n

N∑
i=1

ci
ti

. The

slowdown metric is important because it helps to evaluate normalized waiting
time of a system.

Average job waiting time For the ith job, the waiting time twi is the time between
arrival and start of execution, which is formally defined as twi = tsi − tai .

4.3 A2cScheduler with CNN

We simulated the data center cluster containing N nodes with two resources:
CPU and Memory. We trained the A2cScheduler with different neural networks
including a fully connected layer and Convolutional Neural Networks (CNN).
In order to design the best performance neural networks, we explore different
CNN architectures and compare whether it converges and how is the converge
speed with different settings. As shown in table 3, fully connected layer (FC
layer) with a flatten layer in front did not converge. This is because the state
of the environment is a matrix with location information while some location
information lost in the flatten layer when the state is processed. To keep the
location information, we utilize CNN layers (16 3*3-filters CNN layer and 32
3*3-filters CNN layer) and they show better results. Then, we explored CNN
with max-pooling and CNN with flattening layer behind. Results show both of
them could converge but CNN with max-pooling gets poorer results. This is
due to some of the state information also get lost when it passes max-pooling
layer. According to the experiment results, we decide to choose the CNN with
a flattening layer behind architecture as it converges fast and gives the best
performance.

4.4 Baselines

The performance of the proposed method is compared with some of the main-
stream baselines such as Shortest Job First (SJF), Tetris [4], and random policy.
SJF sorts jobs according to their execution time and schedules jobs with the
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(a) Discounted reward. (b) Slowdown.

(c) Average completion time. (d) Average waiting time.

Fig. 3. A2C performance with a job arrival rate=0.7

Table 3. Performances of different network architectures.

Architecture Converge Converging Converging
Speed Epochs

FC layer No N.A. N.A.

Conv3-16 Yes Fast 500

Conv3-32 Yes Slow 1100

Conv3-16 + pooling Yes Fast 700

Conv3-32 + pooling Yes Fast 900

shortest execution time first; Tetris schedules job by a combined score of pref-
erences for the short jobs and resource packing; random policy schedules jobs
randomly. All of these baselines work in a greedy way that allocates as many
jobs as allowed by the resources, and share the same resource constraints and
take the same input as the proposed model.
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(a) Discounted reward. (b) Slowdown.

(c) Average completion time. (d) Average waiting time.

Fig. 4. A2C performance with real world log data

Table 4. Results of Job Traces.

Type Random Tetris SJF A2cScheduler

Slowdown 3.52±0.00 1.82±0.00 1.61±0.00 1.01±0.02

CT ∗ 10.2±0.00 5.55±0.00 5.51±0.00 2.58±0.01

WT ∗ 6.32±0.00 1.25±0.00 1.21±0.00 0.01±0.02

4.5 Performance Comparison

Performance on Synthetic Dataset In our experiment, the A2cScheduler
utilized an A2C reinforcement learning method. It is worth to mention that
the model includes the option to have multiple episodes in order to allow us
to measure the average performance achieved and the capacity to learn for each
scheduling policy. Algorithm 1 presents the calculation and update of parameters
per episode. Figure 3 shows experimental results with synthetic job distribution
as input.

Figure 3(a) and Figure 3(b) present the rewards and averaged slowdown when
the new job rate is 0.7. Cumulative rewards and averaged slowdown converge
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around 500 episodes. A2cScheduler has lower averaged slowdown than random,
Tetris and SJF after 500 episodes. Figure 3(c) and Figure 3(d) show the average
completion time and average waiting time of the A2cScheduler algorithm versus
baselines. As we can see, the performance of A2cScheduler is the best comparing
to all the baselines.

Table 1, 2 present the steady state simulation results at different job rates.
We can see the A2cScheduler algorithm gets the best or close to the best perfor-
mance regrading slowdown, average completion time and average waiting time
at different job rates ranging from 0.6 to 0.9.

Performance on Real-world Dataset We ran experiments with a piece of job
trace from an academic data center. The results were shown in figure 4. The job
traces were preprocessed before they are trained with the A2cScheduler. There
was some fluctuation at the first 500 episodes in 4(a), then it started to converge.
Figure 4(b) shows the average slowdown was better than all the baselines and
close to optimal value 1, which means the average waiting time was almost 0
as shown in figure 4(d). This happens because there were only 60 jobs in this
case study and jobs runtime are small. This was an case where almost no job
was waiting for the allocation when it was optimally scheduled. A2cScheduler
also gains the shortest completion time among different methods from figure 4(c).
Table 4 shows the steady state results from a real-world job distribution running
on an academic cluster. A2cScheduler gets optimal scheduling results since there
is near 0 average waiting time for this jobs distribution. Again, this experimental
results proves A2cScheduler effectively finds the proper scheduling policies by
itself given adequate training, both on simulation dataset and real-world dataset.
There were no rules predefined for the scheduler in advance, instead, there was
only a reward defined with the system optimization target included. This proven
our defined reward function was effective in helping the scheduler to learn the
optimal strategy automatically after adequate training.

5 Conclusion

Job scheduling with resource constraints is a long-standing but critically im-
portant problem for computer systems. In this paper, we proposed an A2C deep
reinforcement learning algorithm to address the customized job scheduling prob-
lem in data centers We defined a reward function related to averaged job wait-
ing time which leads A2cScheduler to find scheduling policy by itself. Without
the need for any predefined rules, this scheduler is able to automatically learn
strategies directly from experience and thus improve scheduling policies. Our
experiments on both simulated data and real job traces for a data center show
that our proposed method performs better than widely used SJF and Tetris for
multi-resource cluster scheduling algorithms, offering a real alternative to cur-
rent conventional approaches. The experimental results reported in this paper
are based on two-resource (CPU/Memory) restrictions, but this approach can
also be easily adapted for more complex multi-resource restriction scheduling
scenarios.
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