
Uncertainty Quantification in CNN Through the Bootstrap of Convex Neural
Networks

Hongfei Du 1, Emre Barut 2, Fang Jin 1

1 The George Washington University
2 Amazon.com, Inc.

hongfei@gwu.edu, ebarut@amazon.com, fangjin@gwu.edu

Abstract

Despite the popularity of Convolutional Neural Networks
(CNN), the problem of uncertainty quantification (UQ) of
CNN has been largely overlooked. Lack of efficient UQ tools
severely limits the application of CNN in certain areas, such
as medicine, where prediction uncertainty is critically impor-
tant. Among the few existing UQ approaches that have been
proposed for deep learning, none of them has theoretical con-
sistency that can guarantee the uncertainty quality. To address
this issue, we propose a novel bootstrap based framework for
the estimation of prediction uncertainty. The inference pro-
cedure we use relies on convexified neural networks to es-
tablish the theoretical consistency of bootstrap. Our approach
has a significantly less computational load than its competi-
tors, as it relies on warm-starts at each bootstrap that avoids
refitting the model from scratch. We further explore a novel
transfer learning method so our framework can work on ar-
bitrary neural networks. We experimentally demonstrate our
approach has a much better performance compared to other
baseline CNNs and state-of-the-art methods on various im-
age datasets.

Introduction
Artificial neural networks have been a huge success in
many areas and its uncertainty quantification (UQ) is also
an important task for many machine learning practitioner
(Ghahramani 2015; Krzywinski and Altman 2013). Lack of
uncertainty quantification can severely limit -if not com-
pletely hinder- the deep learning applications in numerous
fields. Straightforward examples such as medicinal applica-
tions where confidence intervals are commonly used to eval-
uate the usefulness of a treatment option while weighing its
possible side effects; and in deep reinforcement learning,
an upper bound on the reward of action has to be quanti-
fied to perform proper exploration. Furthermore, as the im-
portance of bias and fairness in machine learning becomes
mainstream, practitioners need to test hypotheses that use
model outputs, e.g., “is gender a determining factor for the
predictions?”. All these kind of application scenarios cannot
be accomplished without a UQ framework to provide theo-
retical inference.

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(Paass and Gerhard 1993) is the first work that suggests
the use of bootstrap in neural networks. (Robert 1996) com-
pares bootstrap with other UQ methods for neural networks,
and finds bootstrap to be more ideal than other approaches.
More recently, (Khosravi et al. 2015) uses bootstrap for UQ
in neural networks and proposes a prediction interval opti-
mized cost function to train the neural networks. However,
all these approaches are limited due to non-convexity, that
means it is not clear if the optimal solution can be obtained
at every bootstrap sample, which can result in a wide confi-
dence intervals.

To summarize, the challenge of uncertainty quantification
has the following aspects. Firstly, to make the theoretical in-
ference, it is challenging to build a UQ framework with a
proper probabilistic framework that explains the variations
in the fitted models. Specifically, one needs to be able to for-
mulate the distribution of the data generating process and
the sampling distribution, which can be used to quantify the
uncertainties in the fitted parameters. Secondly, procedures
involved in training a neural network, i.e. stochastic gradi-
ent descent and its variations, are often intractable. Due to
issues such as non-convexity, it is very difficult to obtain
theoretical bounds on the consistency of the predictions, or
the quality of the final fitted model. Additionally, neural net-
works often contain millions of parameters and are trained
on datasets with sample sizes that are on the same order.
This process limits the application of statistical inference
which deals with a limited number of variables and often
asymptotically infinite samples. Finally, as shown in (Zhang
et al. 2017), the best performing neural networks training
on CIFAR10 datasets (Krizhevsky 2009) tend to over-fitting
very easily. An overfitted neural network is bound to under-
estimate its uncertainty on hold-out samples, and thus any
approach that solely relies on neural networks for UQ will
result in over-confident estimates for uncertainty.

To overcome the above challenges, we propose a novel
framework to obtain prediction intervals by bootstrapping
the predictions of convexified convolutional neural networks
(CCNN) (Zhang, Liang, and Wainwright 2017) with the as-
sistance of transfer learning method, which could further im-
prove the framework’s performance and compatibility. The
contribution of this paper is threefold:

• Firstly, we construct a novel framework for uncertainty
quantification (UQ) through Bootstrap of Convex Neural

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

12078



Networks, which provides the prediction intervals for un-
certainty measurement. To best of our knowledge, we are
the first to formulate the distribution of the data generat-
ing process and the sampling distribution, and mathemati-
cally prove that the predictions from bootstrap CCNN are
asymptotically consistent, which provides solid theoreti-
cal support for our framework.

• Secondly, we creatively integrate transfer learning with
our proposed UQ framework to overcome the limitation
of CCNN. Previously, CCNN could only be applied to
two layers CNN. Within the combined transfer learning
framework, we could perform UQ for arbitrary neural
networks, both convex and non-convex CNN. This pio-
neering break-though contribution makes our bootstrap
CCNN framework be able to adapt to much broader ap-
plication domains.

• Lastly, when combining transfer learning method with
CCNN, the classification accuracy and stability are bet-
ter than baseline CNNs and state-of-the-art methods in
various classification tasks. Extensive experiments were
implemented to demonstrate this results.

The outline of this paper is as follows. In the next section, we
give a brief overview of related work. After that, we explain
the construction of CCNN in the section . In section , we for-
mulate our procedure and demonstrate how the method can
be combined with transfer learning. In section , we math-
ematically prove the theoretical consistency properties. In
section 6, we show our experimental results of our approach
performance on multiple datasets. Finally, we draw our con-
clusion in the last section.

Related Work
One big family for UQ focus on Bayesian approaches where
the uncertainty is quantified through the variation in the
posterior distribution. In this context, one method models
the weights from neural network with a Gaussian distri-
bution, and obtain the posterior using variational inference
(Blundell et al. 2015). Another framework proposes the
MC dropout measure, where dropout is used to obtain the
range of possible predictions (Gal and Ghahramani 2016).
Their suggested procedure is computationally efficient, in
the sense that the dropouts can be done after the model is
trained; however, later experiments show that the estimated
uncertainty does not reduce as the sample size increases (Os-
band, Aslanides, and Cassirer 2018).

The other big family for UQ is to make use of ensem-
ble methods, begin with the approach propose to quantify
the uncertainty through the use of ensemble models (G,
Pádraig, and Umesh 1999), where multiple neural networks
are trained and the uncertainty is quantified through the dif-
ference of their predictions. More recently, one approach in-
dependently trains multiple nets and uses the variance of
the predictions as a proxy for the uncertainty (Lakshmi-
narayanan, Pritzel, and Blundell 2017). Another work pro-
poses to build an ensemble in which the samples are boot-
strapped at each iteration and a network is fit with a shrink-
age penalty which forces the weights to be similar to a target
network (Osband, Aslanides, and Cassirer 2018). They show

the efficacy of their approach for deep reinforcement learn-
ing problems where the uncertainty estimates are crucial for
exploration. However, ensemble methods need to train each
neural network independently from scratch, so it is not com-
putationally efficient. Moreover, ensemble methods still suf-
fer from the non-convex problem, which ends up with incon-
sistent outputs from different training.

Besides these two mainstreams, there are also other at-
tempts for UQ. One approach uses the delta-method to build
prediction intervals for feedforward networks and establish
its statistical consistency (Gene and Adam 1997). Another
method introduced a new (non-convex) loss function that
depends on the range of possible predictions, which can
be leveraged to compute prediction intervals for fully con-
nected neural networks instead of a point estimate (T et al.
2018). Other work using quantile loss to produce prediction
intervals in a computationally attractive manner is developed
(Tagasovska and Lopez-Paz 2019). However, all the above
approaches rely on classic neural networks, which suffer
from the non-convex nature and over-fitting problem.

Convex Convolutional Neural Networks
We provide the necessary notations and present an overview
of CCNN, which are obtained through a convex relaxation
of the two hidden layers CNN. A detailed version of the pre-
sentation can be found in the Appendix.

In this paper, we consider the dimension of the input im-
age x is l1 × l1 × d. Without loss of generality, we assume
the image length and the width are the same and are both
given by l1. d represents the number of channels. d is ei-
ther 1 or 3 for black&white and color images, respectively.
The label for each image xi is denoted by yi for i = 1, . . . , n
where n is the sample size. For simplicity, we further assume
there are only two classes, that is yi ∈ {0, 1}. The extension
to multiple classes can be easily obtained by following the
framework in the Appendix, or by rephrasing the classifica-
tion problem with a one versus all setup where a different
model is built for each class (Allwein, Schapire, and Singer
2000).

CCNN, just like any other CNN, computes classification
scores from patches of the input image. For a sample xi, we
denote its patches as zp(xi), where p is from 1 to P , and
P is the total number of patches. We assume that the patch
size is l2 × l2 × d, where l2 corresponds to the size of the
convolution kernel. We further denote the stride of the filter
as s, and thus P = ((l1 − l2) /s+ 1)

2. Additionally, each
patch zp(xi) is vectorized and hence zp(xi) ∈ Rdl22 . Finally,
parameters in the model are A1, . . . , AP with Ap ∈ Rdl22 .
Then in the framework with linear activation function, the
CCNN classification score for xi is given by

f(xi) =
P∑
p=1

ATp zp(xi). (1)

The terms in Ap correspond to multiplication of the con-
volution filters and the weights between middle and the final
layer. As the convolution filters should be the same for all
patches, we would expect that the matrix A = [A1, . . . , AP ]

12079



is low-rank. CCNN enforces the low-rank structure by min-
imizing the nuclear norm of A, ‖A‖∗, which is defined as
the absolute sum of its singular values, leading to the final
objective function

min
‖A‖∗≤C

n∑
i=1

L(f(xi), yi), (2)

where L is often the cross entropy loss function, and C > 0
is an constant. (Zhang, Liang, and Wainwright 2017) showed
that with an appropriate choice of C, the method finds a
classifier whose expected loss is bounded above with the ex-
pected loss of an optimal (non-convex) CNN. (Zhang, Liang,
and Wainwright 2017) also suggested using projected gradi-
ent descent to minimize the objective function due to the
high efficiency. Since the projection algorithm could be exe-
cuted in a stochastic fashion, so that each gradient step pro-
cesses a mini-batch of examples.

The previous formulation only results in linear networks,
which can be extended to networks with non-linear activa-
tion functions by the use of the kernel trick, i.e., instead of
using the actual patch values, Firstly, an appropriate kernel
k(·, ·) will be chosen, and the corresponding kernel matrix,
K ∈ RnP×nP for each patch and sample pair will be com-
puted. Secondly, a factorization matrix Q will be computed,
where K = QQT . Finally, the zp(xi) in the original formu-
lation is replaced with the relevant row Qk from the kernel
matrixQ, whereQk corresponds to the pth patch from the ith
sample. Thus, in the non-linear framework, the CCNN score
xi is given by

f(xi) =

P∑
p=1

ATpQ(xi, p), (3)

where Q(xi, p) denotes the relevant row of Q for sample i
and patch p, and Ap is a matrix that has nP many compo-
nents. (Zhang, Liang, and Wainwright 2017) establish that
with the appropriate choice of the kernel k(·, ·), e.g., Gaus-
sian radial kernel, this class of CCNN includes convolu-
tional neural networks with non-linear activations for which
the activation has a polynomial expansion. Unfortunately,
the commonly utilized RELU is not in this collection, but
the smoothed RELU is. We again refer to the Appendix for
the details of each operation. Based on the convexity from
CCNN, we discuss our framework in next section.

Bootstrapping with CCNN
In this section, we first discuss our proposed bootstrap
CCNN framework in detail. Then, we show how the method
can be extended to CNN with multiple layers using our novel
transfer learning method.

Bootstrap CCNN
Our approach follows the classical bootstrap setup, in which
the dataset is sampled (with replacement) at each iteration.
During each bootstrap, we use the parameter of the previous
bootstrap Ab−1 as the initial point. With this “warm start”
approach, we reduce the number of necessary training iter-
ations by an order of magnitude. We note that this would

Algorithm 1 CCNN Bootstrap

Input: Training dataset D = {(xi, yi)}ni=1, test dataset
T = {(x′i, y

′

i)}n
′

i=1 for which the prediction intervals need
to be computed, confidence level α, and the number of
bootstraps B.
A0 ← argminL(A;D) {Train CCNN on D and store
fitted weights}
for b in 1:B do
Db ← sample with replacement(D,n) {Create boot-
strap sample}
Ab ← argminL(A;Db, Ainit = Ab−1) {Initialize a
new CCNN model with previous weights, train on Db}
ppb,i,k ← exp(f̂b,k(x

′
i))∑d2

j=1 exp(f̂b,j(x
′
i))
, for i = 1, ..., n

′
, k =

1, ..., d2, where d2 is total number of classes. {Compute
predictions for test data}

end for
Calculate (pplic, ppuic), where pplic and ppuic are the
α
2% and (1−α)

2 % percentile of (pp1,i,c, pp2,i,c, ..., ppB,i,c)
for c ∈ [d2] and i ∈ [n

′
]

Output: (pplic, ppuic) for c ∈ [d2] and i ∈ [n
′
], the (1 −

α)% C.I.s for the predictions.

not be possible if the formulation was not convex. For in-
stance, if the warm start technique is used to train usual (non-
convex) CNN, the last solution would be the local optimum
closest to the previous one, and hence predictions obtained
with the last bootstrap would implicitly rely on samples that
are not included in its training data, canceling the statistical
validity of the procedure. As the distribution of the predic-
tions is close to the sampling distribution, the empirical dis-
tribution of the prediction probabilities provides a consistent
estimate for the true probabilities. The prediction interval is
then generated by the empirical bootstrap confidence inter-
val. We also provide all the procedures in Algorithm 1.

Our approach is beneficial due to two main reasons:
Firstly, the convexity of the CCNN procedure guarantees the
global optimum for the subsampled dataset and the statisti-
cal validity of the procedure. Secondly, for each bootstrap,
we do not have to fit the model from scratch and can in-
stead initialize the parameters to the previous solution. This
‘warm-start’ is possible is because of the convexity that the
global optimum can be obtained regardless of the initial
point. When the initial point is close to the optimum, then
fewer iterations are needed, which means it saves significant
computational time.

Transfer Learning
The original CCNN formulation can only build neural net-
works with two hidden layers. (Zhang, Liang, and Wain-
wright 2017) proposes to get around this limitation by suc-
cessively adding more layers, where multiple CCNN are in
the model and at each iteration convolution output from cur-
rent CCNN will be passed to the next CCNN. Theoretically,
this multi-stage framework is difficult to study. We instead
propose to utilize transfer learning to generalize two layers

12080



CCNN for multi-layers neural networks’ task.
Our approach relies on the availability of another CNN,

denoted CNN , that has been trained for a similar task. For
most image classification problems, one can use a neural
network trained on ImageNet, such as VGG16 or Resnet50
(He et al. 2016). We propose to use the outputs from
the last convolution layer of this network as inputs to the
CCNN. The transfer learning method replaces each xi with
fCNN (xi) where fCNN (·) returns the output of the last con-
volution layer of the deep neural network CNN .

We note that the transfer learning does not annul the va-
lidity of the bootstrap approach, as long as the pre-trained
network used for transfer learning does not depend on any
samples in our training data. Otherwise, if the pre-trained
network relies on samples that are included in the training
data, then the training data drawn during bootstrap would
not be independent of each other. This is critical as our the-
oretical results are conditional on the independence of the
observations.

In certain applications, such a pre-trained network may
not be available. To get around this obstacle, we propose
three possible approaches to create neural networks that can
be used in pre-training. All of these approaches first train
a CNN on our original dataset and then adjust the weights
of this learned neural network so that the deep learner “for-
gets” what it has learned from the training data. We argue
that the convolution filters learned with these approaches are
still useful for our training data, and that the added random-
ness due to “forgetting” cancels the dependency between the
outputs of the neural network and the training data, leading
to a consistent bootstrap procedure. Although these tech-
niques do not have the theoretical validity of the basic trans-
fer learning approach, we find that they still yield compara-
ble performances. We list these approaches below.

1. Train and Forget: We train CNN on the training dataset.
After a certain number of epochs, we replace the train-
ing data with an irrelevant dataset and continue training
until the accuracy of the original dataset declines to a
completely random guess. For instance, for classifying the
MNIST dataset, one can first fit on MNIST, and then on
Fashion-MNIST (Xiao, Rasul, and Vollgraf 2017).

2. Train and Flip: We train a CNN on the training dataset
with the original labels for a certain number of epochs.
Then, we randomly flip the labels and continue training
until the deep learner learns to overfit to the random la-
bels.

3. Train and Perturb: After a CNN is trained, we add ran-
dom perturbations to the weights of the CNN. The size of
the perturbations are chosen to guarantee that the predic-
tion of the CNN is equal to a random guess.

Theoretical Results

In this section, we show that with certain modifications,
the CCNN can be consistently bootstrapped. Our modified
CCNN formulation minimizes the following objective func-

tion:

min
A

1

n

n∑
i=1

L(f(xi), yi) + λ‖A‖∗µ, (4)

where f(xi) is given by the linear form in equation (1), λ >
0 is a regularization parameter and ‖A‖∗µ is the smoothed
nuclear norm:

‖A‖∗µ = sup
‖Z‖2≤1

(
Tr(ATZ)− µ/2‖Z‖2Fr

)
, (5)

where ‖Z‖Fr, |Z‖2 are given by the Frobenius norm and
the spectral norm of a matrix Z, respectively, and Tr() is the
matrix trace. Furthermore, we have that ‖A‖∗µ → ‖A‖∗ as
µ→ 0. We present the results for single class classification,
thus we take the loss function to be the log-loss, i.e.,

L(f(xi), yi) = − log(p(f(xi))yi−log(1−p(f(xi))(1−yi),
(6)

where p(z) = (1 + exp(z)−1)−1. We also note that due to
duality (Rockafellar 1970), the formulation in (4) is equiva-
lent to

min
‖A‖∗µ≤C

n∑
i=1

L(f(xi), yi) (7)

for some constant C > 0.
In the new formulation, the use of the smoothed nuclear

norm ensures that the loss function is differentiable. Thus,
the functional that maps the distribution, F , to the estimated
function f(x) is Hadamard differentiable, making bootstrap
consistent (W and A 1996). Next, our first theoretical result,
Theorem 1, states that we can consistently estimate the sam-
pling distribution of our predictions with bootstrap.

Theorem 1 For a data generating process P, let fP,λ be the
function of form (1) for which A is the minimizer of

min
A

E(X,Y )∼P [L(f(X), Y )] + λ‖A‖∗µ. (8)

Similarly, let fPn,λ be the estimated function that results
from minimizing (4) over an empirical measure Pn whose
observations are drawn independently from P. For any x, let

Hn(z;x) = P [fPn,λ(x)− fP,λ(x) ≤ z] , (9)

HBn(z;x) = PB
[
fPBn ,λ(x)− fPn,λ(x) ≤ z

]
, (10)

where PB is the probability over bootstraps and PBn refers
to the empirical distribution obtained by bootstrapping from
Pn. Then, for any x, it holds that

sup
z
|HBn(z;x)−Hn(z;x)| → 0 in probability. (11)

The proof is provided in the Appendix. The proof relies
on the work of (Snigdhansu and Arup 2005) which estab-
lishes the consistency of the bootstrap for M-estimators. We
note that the theorem does not guarantee the consistency of
the bootstrap procedure. That is, confidence intervals from
bootstrap might not be consistent if the minimizer over the
data generating process, fP,λ is not consistent either. Our
next theorem establishes that consistency can be obtained if
the data are separable.

12081



Theorem 2 Assume that the data are separable, i.e. there is
an unknown function f∗(x) that can achieve perfect classi-
fication. Further, assume that the function f∗(x) can be rep-
resented as a two-hidden layer CNN with linear activation
functions and a finite number of convolution filters. Then,
the bootstrap is consistent for the minimizer of equation (4).

The proof is included in the Appendix and uses the gen-
eralization bounds for CCNNs derived by (Zhang, Liang,
and Wainwright 2017) with adjustments specific to our case.
Combining Theorem 1 and Theorem 2, we prove the consis-
tency of our bootstrap procedure.

Few remarks are in order. Although the stated theorems
are only valid for linear networks, our results still apply to
CCNNs with non-linear activation functions where the “fea-
tures” zp(xi) are replaced by terms derived from the kernel
matrix, as in Section . However, if these features are to be
obtained from the kernel matrix, there are a couple of is-
sues that require attention: (i) bootstrap relies on the inde-
pendence of observations, and the new features have to be
independent of each other; (ii) the number of features, i.e.
the dimension of the replacements for zp(xi), need to be of
a smaller order than n as n → ∞. Neither of these condi-
tions is met with the suggested kernel framework in Section ,
but they can be satisfied with minor modifications.

For the independence requirement, we propose to use a
secondary dataset that has the same data generating process
as the original training data and evaluate the kernel using the
secondary dataset. That is, instead of calculating K(xi, xj),
one computes K(xi, x̃j) where x̃j are from the secondary
dataset. Note that the data points in the secondary dataset
do not have to be labeled, and obtaining such new unlabeled
data should be feasible for most image classification tasks.
Another, rather dull, alternative is to set aside some portion
of the training data and use it as the secondary dataset.

The requirement on the size of the features can be satis-
fied by fewer kernel evaluations. In practice, this is almost
never an issue, as most practitioners (and algorithms) rely on
approximations of the kernel matrix rather than its full form.

Experiment Results
In this section, we exhibit the results of our numerical exper-
iment for the bootstrap procedure discussed in section . We
use five datasets: MNIST (LeCun et al. 1998), noisy MNIST
(Basu et al. 2017), fashion MNIST (Xiao, Rasul, and Voll-
graf 2017), CIFAR10 (Krizhevsky 2009) and the cats and
dogs dataset (Parkhi et al. 2012), which contains 30,000 im-
ages of various cats and dogs. The CCNN runs on the 16
cores CPU with 64GB RAM, and other classic neural net-
works run on GPU.

Demonstration on MNIST
In our first experiment, we apply our bootstrap CCNN pro-
cedure to the MNIST dataset (LeCun et al. 1998) to obtain
prediction intervals of classification outputs. As it is rela-
tively easy to obtain high accuracy on MNIST dataset and
to better evaluate our procedure’s performance of UQ when
higher variation presents in the outputs, we reduce the size
of the training dataset (only 1000 images in the train set and

100 images in test set) and also reduce the training itera-
tions to 5 at each bootstrap. We set the number of bootstraps
B = 1000 and calculate the prediction intervals for the test
dataset. Results are given in Figure1, the distributions of
the prediction probabilities for 5 randomly selected digits
from the test dataset are presented and more results are in-
cluded in the Appendix. From Figure1 , we observe that for
each digit, the prediction probabilities for correct digits are
much higher than the wrong digits. Also, our procedure de-
tects higher uncertainty in classification task for digit 3 and
4 given their wider prediction intervals. To further test our
procedure’s performance of UQ, we experiment our proce-
dure on various datasets and compare its performance with
baseline CNNs and ensemble method in section .

Comparisons Versus Alternatives
In this subsection, we compare our procedure with two al-
ternative techniques: (i) the ensemble method with 20 nets
(Lakshminarayanan, Pritzel, and Blundell 2017); and (ii)
bootstrap with non-convex CNN. In each experiment, we
evaluate each method’s accuracy and uncertainty on test
datasets using two criteria:

1. Interval length: Given as the average length of the 95%
confidence interval. Shorter interval length is more pre-
ferred, which indicates lower uncertainty.

2. Average log-likelihood: Given as the average log-
likelihood of the observations over the estimates of pre-
diction probabilities. More specifically, the score is given
by

L =
1

B

B∑
b=1

N∑
i=1

H
(
pbi , yi

)
, (12)

where pbi is the estimated probabilities for sample i in
bootstrap b, yi is the one-hot encoding for the true class
and H(·, ·) is the cross-entropy. In this metric, larger
scores are more preferable as they suggest less entropy
between the modeled distribution and the outcome, which
also indicates the smaller difference between pbi and yi
over all test samples and bootstraps. Therefore, higher av-
erage log-likelihood implies model’s higher overall pre-
diction accuracy.

Our experiment uses the following datasets:

1. MNIST (LeCun et al. 1998) with 10 classes of handwrit-
ten digits. The images’ size is 28x28 and in gray scale.
We use 60,000 images for training and 1,000 images for
testing.

2. Noisy MNIST (Basu et al. 2017) with motion blur added
to original MNIST dataset. The images’ size and sizes of
training and testing datasets are same as above.

3. Fashion MNIST Dataset containing 10 classes of clothes
(Xiao, Rasul, and Vollgraf 2017). The images’ size and
sizes of training and testing datasets are same as above.

4. Cats and Dogs (Parkhi et al. 2012). The images’ size is
224x224x3 and in RGB. We use 10,000 images for train-
ing and 1,000 images for testing.

12082



Figure 1. Application of the new bootstrap approach on MNIST. The first row displays the digit images and the distributions of
the predictions are plotted across 1000 bootstraps in the second row. The 95% confidence interval of the prediction probabilities
for the right class are also provided.

Average log-likelihood/ Interval length

CCNN Ensemble CNN

MNIST -3.050 (0.022) -5.193 (0.022) -6.891 (0.025)
0.0010 (0.0002) 0.0045 (0.0015) 0.0021 (0.0012)

MNIST-blur -8.773 (0.056) -10.320 (0.174) -7.810 (0.224)
0.0074 (0.0012) 0.0300 (0.0033) 0.006 (0.0019)

Cats and Dogs -222.686 (0.685) -239.654 (0.986) -334.797 (0.967)
0.0649 (0.0040) 0.129 (0.0071) 0.0715 (0.0051)

Fashion MNIST -355.46 (0.81) -363.19 (5.38) -458.06 (1.90)
0.072 (0.0047) 0.116 (0.0074) 0.105 (0.0074)

Table 1. Average log-likelihood and average interval length comparison among CCNN, ensemble method and CNN for 4
different datasets. For each dataset, first row is the average log-likelihood and second row is the average interval length. Standard
errors are provided in parentheses.

For the first three datasets, the ensemble method and the
bootstrap CNN use the classic CNN, Le-Net, with 3 con-
volution and 2 fully connected layers, where the numbers of
convolution filters are (32,64,128) with a kernel size of (2,2).

CCNN uses the standard two-hidden layers setup for
MNIST and Noisy MNIST. For training CCNN on the Fash-
ion MNIST dataset, we utilize transfer learning. Firstly, we
train a CNN on original MNIST and then use it as the pre-
trained model. Next, we feed the Fashion MNIST dataset to
the pre-trained model and the outputs from its last convolu-
tion layer are used as the input for CCNN.

For the Cats and Dogs dataset, we use transfer learn-
ing for all methods and utilize VGG16 (Simonyan and Zis-
serman 2015). For ensemble and bootstrap CNN, we use
transfer learning to retrain the last three layers of VGG16.
For CCNN, we the feed Cats and Dogs dataset to the pre-
trained VGG16 and outputs from its last convolution layer

are used as input for CCNN. Both CCNN and CNN use
100 bootstraps. The ensemble method uses 20 networks
(VGG16). We provide the results of our experiments in Ta-
ble 1 and we could observe that our bootstrap CCNN ap-
proach yields higher log-likelihood and shorter intervals on
average for 3 datasets as shown in bold numbers, which
demonstrates the higher prediction accuracy and lower un-
certainty. Also, the corresponding standard errors in the
parentheses are smaller than the other two methods, which
shows our approach provides more stable predictions and
more consistent uncertainty measurement. For the MNIST-
blur dataset, our method achieves similar levels of accu-
racy (average log-likelihood) and uncertainty (average inter-
val length) as the baseline CNN method, while our method
has smaller standard errors in both cases, which shows that
under comparable performance, our method provides more
stable prediction and more consistent uncertainty measure-

12083



Average log-likelihood/Interval length

Ensemble CCNN Forget Flip Perturb

Fashion MNIST -363.19 (5.38) -355.46 (0.81) -261.187 (0.298) -461.285 (0.359) -445.957 (0.285)
0.116 (0.0074) 0.072 (0.0047) 0.0703 (0.0031) 0.0934 (0.0031) 0.0925 (0.0025)

CIFAR10 -666.082 (6.205) -576.417 (0.533) -525.736 (0.532) -577.382 (0.436) -555.675 (0.324)
0.576 (0.01) 0.168 (0.003) 0.170 (0.004) 0.166 (0.003) 0.138 (0.002)

Table 2. Average log-likelihood and average interval length comparison among three transfer learning approaches, CCNN and
the ensemble method with 20 nets. For each dataset, first row is the average log-likelihood and second row is the average
interval length. Standard errors are provided in parentheses.

ment. The above observations support our theoretical claim
that the non-convex neural networks (CNN) tend to have
higher uncertainty in predictions due to the difficulty of con-
vergence to global optimal. Moreover, our bootstrap UQ
method could detect this higher uncertainty, which suggests
that our approach can be used reliably to quantify uncer-
tainty in complex machine vision tasks.

Comparison of Transfer Learning Approaches
We generalize the two layers CCNN by three novel trans-
fer learning approaches, which are listed in Section . In this
subsection, We compare their performance on two datasets:
Fashion MNIST (Xiao, Rasul, and Vollgraf 2017) and CI-
FAR10 (Krizhevsky 2009).

The pre-trained networks for transfer learning use the
same architecture as in the previous subsection, with 3 con-
volution layers and 2 fully connected layers. The pre-trained
networks are built in the following manner:

1. Train and Forget: We train the CNN on Fashion MNIST
data (cats and dogs from CIFAR10) for 30 epochs. Then,
the same network is trained on Original MNIST data (deer
and horse from CIFAR10) for another 30 epochs.

2. Train and Flip: We train the CNN on Fashion MNIST
data (cats and dogs from CIFAR10) for 30 epochs. Then,
we train the CNN on the same datasets with randomly
flipped labels for another 30 epochs.

3. Train and Perturb: We train the CNN on Fashion
MNIST data (cats and dogs from CIFAR10) for 30
epochs. Then, we add random Gaussian perturbations
(with σ = 0.5 and σ = 0.1 for Fashion MNIST and CI-
FAR10, respectively) to all of the weights. After the per-
turbation, accuracy of the model is very close to 10% for
Fashion MNIST experiment (50% for CIFAR10 experi-
ment).

After the pre-trained CNN is built, the outputs of its
last convolution layer are used as the input for the CCNN
model. Then, the prediction intervals are estimated with
100 bootstraps. We explore different tuning parameters for
CCNN and the best performances in terms of the average
log-likelihood and the average interval length are given in
Table 2. We provide the experiment results for all of the
settings we considered in the Appendix. We also find that

the performance difference between the best and the worst
hyper-parameters are not significant.

From Table 2, we find that the proposed transfer learning
methods provide an efficient tool for generalizing the CCNN
framework for multiple layers networks’ task, as evidenced
by the shorter interval lengths and the higher average log-
likelihoods. We also observe that ‘Train and Perturb’ method
has the smallest standard errors for average log-likelihood
and interval length in both experiments, which may serve
as a conservative choice. “Train and Forget” method has the
best overall performance in terms of higher accuracy (aver-
age log-likelihood) and lower uncertainty (average interval
length). In the meantime, it also achieves similar levels of
standard errors as “Train and Perturb” method. To summary,
we conclude the overall best performing transfer learning
approach is “Train and Forget”, which consistently outper-
forms the ensemble method and original CNN method as
shown in Table 2.

Conclusion
Due to the non-convex nature of CNN, it is hard to guaran-
tee the outputs converge to global optimal results, making
the uncertainty quantification of CNN a challenging task. To
solve this problem, we propose a novel framework which
combines the bootstrap method and CCNN in this paper.
We prove that our approach can consistently estimate the
sampling distribution of the predictions with the bootstrap
method, and thus provides theoretical support for our frame-
work. Moreover, we explore an innovative transfer learning
method, ‘Train and Forget’, to improve convexified neural
networks’ prediction accuracy and reduces its uncertainty,
which also enables our framework works for arbitrary neural
networks. Our experimental results show our proposed boot-
strap CCNN framework combined with the ‘Train and For-
get’ transfer learning method achieves better accuracy and
stability compared to the baseline CNNs and state-of-the-art
methods.

References
Allwein, E. L.; Schapire, R. E.; and Singer, Y. 2000. Reduc-
ing multi-class to binary: A unifying approach for margin
classifiers. Journal of Machine Learning Research 1: 113–
141.

12084



Basu, S.; Karki, M.; Ganguly, S.; DiBiano, R.; Mukhopad-
hyay, S.; and Nemani, R. 2017. Learning Sparse Feature
Representations using Probabilistic Quadtrees and Deep Be-
lief Nets. Neural Process Lett 45: 855–867.

Blundell, C.; Cornebise, J.; Kavukcuoglu, K.; and Wierstra,
D. 2015. Weight Uncertainty in Neural Networks. Interna-
tional Conference on Machine Learning 37: 1613–1622.

G, C. J.; Pádraig, C.; and Umesh, B. 1999. Confidence and
prediction intervals for neural network ensembles. In Inter-
national Joint Conference on Neural Networks. Proceedings
(Cat. No. 99CH36339), volume 2, 1215–1218. Institute of
Electrical and Electronics Engineers.

Gal, Y.; and Ghahramani, Z. 2016. Dropout as a Bayesian
Approximation: Representing Model Uncertainty in Deep
Learning. International Conference on Machine Learning
48.

Gene, H. J.; and Adam, D. A. 1997. Prediction intervals for
artificial neural networks. Journal of the American Statisti-
cal Association 92(438): 748–757.

Ghahramani, Z. 2015. Probabilistic machine learning and
artificial intelligence. Nature 521: 7553.

He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep Resid-
ual Learning for Image Recognition. IEEE Conference on
Computer Vision and Pattern Recognition .

Khosravi, A.; Nahavandi, S.; Srinivasan, D.; and Khosravi,
R. 2015. Constructing Optimal Prediction Intervals by Us-
ing Neural Networks and Bootstrap Method. IEEE Transac-
tions on Neural Networks and Learning Systems .

Krizhevsky, A. 2009. Learning multiple layers of features
from tiny images. Technical report, University of Toronto.

Krzywinski, M.; and Altman, N. 2013. Points of signifi-
cance: Importance of being uncertain. Nature methods 10:
9.

Lakshminarayanan, B.; Pritzel, A.; and Blundell, C. 2017.
Simple and Scalable Predictive Uncertainty Estimation us-
ing Deep Ensembles. Conference on Neural Information
Processing Systems .

LeCun, Y.; Bottou, L.; Bengio, Y.; and Haffner, P. 1998.
Gradient-based learning applied to document recognition.
Proceedings of the IEEE 86: 2278–2324.

Osband, I.; Aslanides, J.; and Cassirer, A. 2018. Ran-
domized Prior Functions for Deep Reinforcement Learning.
Conference on Neural Information Processing Systems .

Paass; and Gerhard. 1993. Assessing and improving neural
network predictions by the bootstrap algorithm. In Confer-
ence on Neural Information Processing Systems, 196–203.

Parkhi, O. M.; Vedaldi, A.; Zisserman, A.; and Jawahar,
C. V. 2012. Cats and Dogs. IEEE Conference on Computer
Vision and Pattern Recognition .

Robert, T. 1996. A comparison of some error estimates for
neural network models. Neural Computation 8(1): 152–163.

Rockafellar, R. T. 1970. Convex analysis. 28. Princeton
University Press.

Simonyan, K.; and Zisserman, A. 2015. Very deep convolu-
tional networks for large-scale image recognition. Interna-
tional Conference on Learning Representations .
Snigdhansu, C.; and Arup, B. 2005. Generalized bootstrap
for estimating equations. The Annals of Statistics 33(1):
414–436.
T, P.; M, Z.; A, B.; and A, N. 2018. High-quality prediction
intervals for deep learning: A distribution-free, ensembled
approach. In International Conference on Machine Learn-
ing, volume 9, 6473–6482.
Tagasovska, N.; and Lopez-Paz, D. 2019. Single-Model Un-
certainties for Deep Learning. Conference on Neural Infor-
mation Processing Systems .
W, V. D. V. A.; and A, W. J. 1996. Weak conver-
gence. In Weak convergence and empirical processes, 16–
28. Springer.
Xiao, H.; Rasul, K.; and Vollgraf, R. 2017. Fashion-MNIST:
a Novel Image Dataset for Benchmarking Machine Learning
Algorithms. ArXiv Eprint:1708.07747 .
Zhang, C.; Bengio, S.; Hardt, M.; Recht, B.; and Vinyals,
O. 2017. Understanding Deep Learning Requires Rethink-
ing Generalization. International Conference on Learning
Representations .
Zhang, Y.; Liang, P.; and Wainwright, M. J. 2017. Convexi-
fied Convolutional Neural Networks. International Confer-
ence on Machine Learning .

12085


