
Harvey Flooding Rescue in Social Media
Zhou Yang, Long Hoang Nguyen, Joshua Stuve

Department of Computer Science
Texas Tech University

Lubbock, Texas
{zhou.yang, long.nguyen, joshua.stuve}@ttu.edu

Guofeng Cao
Department of Geosciences

Texas Tech University
Lubbock, Texas

guofeng.cao@ttu.edu

Fang Jin
Department of Computer Science

Texas Tech University
Lubbock, Texas
fang.jin@ttu.edu

Abstract—Social media provided a significant communication
platform for rescuing people when Harvey hit Houston area. In
this devastating flooding crisis, the overloaded official emergency
institutes were not able to respond quickly due to the burst of
call for help in a very short period of time. In this circumstance,
many volunteers and people who needed help often post their
information on social media such as Twitter and Facebook. How
to organize volunteers smartly and efficiently to help people is
an extremely challenging and significant problem considering the
constraints of volunteer’s time slots, urgent priorities, etc. In this
paper, we propose three rescue scheduling algorithms to explain
how to provide victims timely help by the volunteers on social
media.

I. INTRODUCTION

The emergence of the smartphone, social media platform
and other high technology sped our community entered into
a new era, where every aspect is tagged with ‘smart’. Social
media sites such as Twitter and Weibo are experiencing an
explosive level of growth. And their functions are not limited
to broadcasting users daily observations [1], [2], serving as
indicators for finance market [3], forecasting socio-economic
disasters [4]–[6]. At the same time, social media also plays a
significant role in rescuing people when catastrophic Harvey
flooding hit the Houston area. From the early morning of
August 26, 2017, Hurricane Harvey made landfall, and in
the days following, it dumped trillions of gallons of rain
on parts of Texas and Louisiana, spawning unprecedented
flooding, leaving many people stranded in waist-deep flooding
and desperate for help. So many calls came into 911 in one
weekend (Aug 26-27) more than 56,000 within 15 hours
making the official emergency response system overwhelmed
during this crisis 1. However, social media doesn’t have the
constraints of the 911 system, which is limited by the number
of phone lines and people available to answer them. Calls for
help accumulated on social media platforms such as Twitter
where information can flow in real time and is open for anyone
to access. Some people posted their address, while others
posted the address of a relative or a friend in need of help.
As shown in Figure 1, two individuals tweeted the address of
locations where people were stranded and needed help.

After Harvey flooded out Houston, people sprang into action
to help with rescues. Technically, anyone who sees a public

1http://www.sandiegouniontribune.com/opinion/the-conversation/sd-
hurricane-harvey-5-ways-social-media-helped-rescue-efforts-20170828-
htmlstory.html

Fig. 1. Example of rescue request tweets for Harvey flooding.

plea for help can respond by dispatching a rescuer in a
small boat or large vehicle. However, there are also many
volunteers who wanted to rescue flood victims, but did not
know how and where and whom to help. One reason is their
time availability varies. These volunteers may be available for
a whole day service, or simply can only give nearby people a
ride with limited capacity, or even focus more on sick people
or babies who have high priority in rescue. The limited time
slot makes it unhelpful to register volunteers in some official
associations. How to connect the individual volunteers limited
time slots to schedule rescue work in an efficient way, how to
allocate the volunteers’ task in order to minimize his/her time
input, considering calling help location, emergence extent, etc.
is very important. Additionally, how to optimize the match
among the large group of calling and distributed volunteers,
considering time, location, and emergency, is an extremely
challenging problem. However, these critical segments have
not yet been well studied in the disaster relief work.

We propose to design rescue scheduling algorithms, hoping
to provide victims with the timely support they needed, filling
in gaps that were unable to be filled by the government and

Fig. 2. (a) Victims’ and (b) volunteers’ tweets word cloud for Harvey flooding

other organizations, making the victims connected with vol-
unteers who wish to provide rescue services thus extensively
reduce the flooding threats. We collected tweets from the
very beginning of Harvey flood until the rescue work finished
(from Aug 26, 2017 until Aug 30, 2017) in the United States,
and conducted experiments using real dataset. As shown in
Figure 2, the word cloud shows victims’ and volunteers’ posts.
The first task is to identify who and where are the flood
victims. In other words, a tweets classifier is required in
order to extract Harvey victims’ tweets and volunteers’ tweets
accurately and efficiently. Based on flood victims’ location and
numbers, we design scheduling algorithms in order to achieve
optimal rescue efficiency and maximize utilization of volunteer
resource. This approach will enable part-time volunteers to
contribute their limited time, and rescue maximal victims in
an efficient way. Experimental results demonstrate such rescue
caring algorithms are very practical in real disaster rescue
implementations. Our contributions are thus:

• For the first time, we propose that the utilization of a
public resource used for disaster rescue can be optimized
by incorporating scheduling policies. We demonstrate
that this approach is much more efficient than random
scheduling policy based on the Harvey flooding tweets
dataset.

• This scheduling algorithm incorporates considerations for
the young, the old, the handicapped, the sick and the
pregnant, and those special groups were given high rescue
priority and extra cares. Real data is used to evaluate
the performance and the experimental study shows that
the algorithm has high efficiency and better performance
(less average waiting time, more victims were rescued
and fewer volunteers are needed).

• We build a classifier as to identify flood victims from

the social media platform. For those critical missing
information such as address, we design a crowd-sourcing
algorithm to estimate their locations to maximize search
efforts.

II. RELATED WORK

a) Tweets Classification: Text classification focuses on
automatically finding and extracting interesting and non-trivial
information from an unstructured text. Typical examples of
text classification include: classifying documents into a set
of specified topic areas (supervised learning), grouping docu-
ments based on the document content(clustering or topic mod-
eling), and extracting information with specific requirements
(information retrieval) [7]–[10]. The Naive Bayes classifier is
perhaps the simplest and the most widely used classifier. It
models the distribution of documents in each class using a
probabilistic model, assuming that the distribution of different
terms is independent of each other. The nearest neighbor
classifier is a proximity-based classifier that uses distance-
based measures to perform the classification. The main idea
is that documents that belong to the same class are more
likely “similar” or close to each other based on the similarity
measure [11], [12]. Support Vector Machines (SVMs) are
supervised learning classification algorithms that have been
extensively used in text classification problems. Support Vector
Machines try to find good linear separators between various
classes [13], [14]. A tweet is very short, with the limitation
of 140 characters 2, which makes conventional clustering
algorithms problematic. Most words only occur once in each
short text and, as a result, the term frequency-inverse document
frequency (TF-IDF) [15] measure cannot work well. We intend

2http://money.cnn.com/2017/11/07/technology/twitter-280-character-
limit/index.html

to utilize a logistic regression, to help identify whether a tweet
is rescue-related or not.

b) Scheduling Algorithms: Scheduling algorithms are
widely used for distributing limited resources among parties
that request them based on certain rules, such as efficiency
or fairness. The main purpose of a scheduling algorithm
is to maximize the utilization of resources and to ensure
fairness among the parties using the resource. In this paper,
we mainly focus on FCFS [16] scheduling, priority scheduling
and hybrid scheduling. Those scheduling techniques have been
extensively used in telecommunications, computer systems,
logistics, military, among others. Uwe and Ramin [16] demon-
strated that there are algorithmic issues in job scheduling
where theoretical and applied research can both contribute to a
solution, and came up with a new method to improve the uti-
lization of FCFS scheduling. Leung and Whitehead discussed
the complexity of determining whether a set of periodic, real-
time tasks can be scheduled on m ≥ 1 identical processors,
with respect to fixed-priority scheduling, and showed that the
problem is NP-hard in all but one special case [17].

III. INFORMATION RETRIEVAL FROM TWEETS

In this part, three tasks are required in order to obtain full
information from tweets.

A. Data Collection and Geo-coding

The study described in this paper uses tweets geolocated
to the United States, and are collected over the period from
Aug 26 to Aug 30, 2017. We query Twitter API to collect
tweets that also have meta-information, including geographical
coordinates, places of tweeting, user profile location, and
‘mentions information’ about locations present in the body
of the tweet. In cases when no geographical location was
found in the tweet text, we proceed to process the geographical
coordinates and the self-reported location string in the user’s
profile metadata [6].

B. Tweets classifier - SVM

A tweet classifier is built in order to identify whether a
tweet is calling for rescue or not. To reduce the computational
complexity, only the tweet’s description is used as input in the
support vector machine (SVM) classifier. The process begins
by constructing a bag of words from the training dataset
descriptions by deleting meaningless stop-words such as ‘the’,
‘a/an’, and ‘at’. The resulting bag of words is composed
of M words denoted as [w1, w2, ..., wM] [18]. Each tweet
description X is considered as a vector of length M . If the
word wi occurs in its description, then X(i) will be assigned a
value of 1; otherwise, it will be 0. Each protest in the training
dataset is assigned Y = 1 if it is a rescue related tweet, or
Y = 0 if it is a non-rescue related tweet by manually checking
the meaning of its description. In this way, each tweet is
converted to a corresponding vector based on the bag of words.
By combining all the vectors of tweets, a document term

matrix is built. Eventually, the classifying decision becomes
the solution to an optimization problem:

maxLD(αi) =

N∑
i=1

αi − 1/2

N∑
i=1

αiαjyiyjxixj (1)

such that
∑N
i=1 αiyi = 0 and αi > 0. The decision rule is:

f(x) =

N∑
i=1

αiK(xi, x) + b (2)

where K(xi, x) is a polynomial kernel in our solution. Equa-
tion (1) and (2) are explained in detail in [19].

a) Classifier Evaluation: 1000 tweets were manually
labeled as either rescue or non-rescue tweet. 70% of the dataset
was used for training, and the rest was used as test data. To
ensure that the classification results are trustworthy, the per-
formance is carefully evaluated by cross validation, utilizing
measurement criteria of precision (positive predictive value),
recall (true positive rate) [20], F-measure (a measure that
combines precision and recall), and accuracy (the proportion
of true results, both true positives and true negatives among
the total number of cases examined) [21]. The best classifier
is SVM that achieved the best performance, with F-measure
of 0.687 and accuracy of 0.93. A couple of well-known
classification methods (K-nearest neighbor [22], CART [23],
and logistic regression [24]) serve as baseline models.

TABLE I
CLASSIFICATION METHODS COMPARISON.

Precision Recall F measure Accuracy
Log. Regression 0.248 0.658 0.360 0.703

KNN 1.000 0.413 0.584 0.926
CART 0.710 0.579 0.638 0.917
SVM 0.606 0.793 0.687 0.930

C. Priority Determination

Rescue tweets contain some special information, including
location, number of people, emergency conditions, and special
requirements. To accurately identify flood victims’ emergency
conditions, some critical features, such as age, health status,
and situations need to be incorporated. We decide whether one
rescue request need to trigger emergency rescue by designing a
keywords corpus including terms such as ‘grandma, grandpa,
senior, old, baby, kid, pregnant, sick, ill, dangerous’; when a
tweet contains those keywords, the request will be considered
high priority.

IV. SCHEDULING ALGORITHM

Since 911 can only serve certain callers at a time, with so
many people calling for help at the same time, it’s extremely
difficult for everyone to get through. Thus, many people who
are in need of rescue turn to social media for help. They
may use hashtags such as ‘#HarveySOS’, ‘#HarveyRescue’
and ‘#HoustonRescue’, or may post keywords such as ‘help
Harvey victims’. Meanwhile, there are volunteers who are

willing to offer help and have the capacity, such as a boat.
However, those volunteers are scattered around the city. With-
out a coordination center with a well-organized scheduling
policy, it’s difficult to efficiently assign those volunteers to
rescue people who are in need of help. In this paper, we aim to
solve this dilemma by applying several scheduling algorithms
that will boost the efficiency of this system, and hence speed
the rescue work to minimize hurt to victims.

A. The Queuing System And Scheduling Policies

First of all, some terms used in this paper need to be
clarified. There are several key elements in a queuing system.
• Server, which refers to any resource that provides the

required services. In our case, the volunteer is the server.
• Customer, which refers to someone who requires service.

In this paper, it refers to the victim requesting help via
posting rescue tweets.

• Calling population, which refers to the population of
potential customers. It may be assumed to be finite or
infinite (if arrival rate is not affected by the number of
customers being served and waiting).

• System capacity, which refers to a limit on the number
of customers that may be in the waiting line or system.
In this case, we assume it to be unlimited.

Since the volunteer resource is limited, some of the requests
have to wait in line for service, thus the queue is formed in
the service center. The foregoing system can be mapped into
a queuing system with multiple servers. It can be described by
using Kendall’s notation in the form A/S/C [25] [26], where
A denotes the distribution of inter-arrival time, S represents
the service-time distribution, and C represents the number
of servers of a queuing system. It has been extended to
A/S/c/K/N/D where K is the system capacity discipline
and N is the size of the calling population [27] [28] [29].
When the final three parameters are not specified (e.g. M/M/1
queue), it is assumed K =∞, N =∞ and D = FIFO [30].

In our study, this problem can be modeled by a M/M/c
queue by the definition of Queuing Theory. A M/M/c
queue is a stochastic process whose state space is a set of
{0, 1, 2, 3, ...} where the value corresponds to the number of
customers in the system, including any members waiting for
service. Several rules applied in this systems are listed below:
• Arrivals occur at rate according to a Poisson process and

move the process from state i to i+ 1.
• Service times have an exponential distribution with pa-

rameter . If there are less than c requests, some of the
volunteers will be idle. If there are more than c jobs, some
of the requests have to wait in a buffer to be served.

• The buffer is of infinite size, so there is no limit on
the number of customers it can contain since there is
no physical limitation.

Many theorems in queuing theory can be proved by reducing
queues to mathematical systems known as Markov chains [31].
The model can be described as a continuous time Markov
chain with transition rate matrix.The state space 0, 1, 2, 3, ...,

Fig. 3. State Space Diagram for M/M/c, λ:arriving rate, µ:service rate

refers to a set of values that the corresponding process may
take. The model is a type of birthdeath process. The state space
diagram for this chain is described in Figure 3, which indicates
how the states of the process can be inter-converted. In M |M |c
queues, the arrival rate remains the same as M |M |1 queues,
but the service rate will depend on the number of servers. The
service rate will be n for n <= c. As soon as the number of
customers exceeds c, the service rate becomes c as shown in
equation µc. The service rate, µc in this case, will be:

µc =

{
nµ n <c for n=1,2,...c
cµ n >c for n=c,c+1...

The probability of having n customers in the service system
can be written in a similar way, as we wrote for M |M |1 model
but with revised service rate.

Pn =

(
λ

µc

)n
× P0 (3)

or

Pn =


(

λn

µ(2µ)(3µ)······(nµ)

)
P0 (if n <c)(

λn

µ(2µ)(3µ)······(cµ)(cµ)n−c

)
P0 (if n c)

namely,

Pn =


(

1
n!

(
λ
µ

)n)
P0(

1
c!

(
λ
µ

)c(
λ
cµ

)(n−c))
P0

(4)

1) Performance measures of M |M |c Queuing model: First,
we will determine the number of customers in the queue, Lq .
In the system, there will be no queue formed until the number
of customers are less than or equal to the number of servers.
The customer will enter the queue when he finds all the servers
busy. Hence, n− c represents the number of customers in the
queue. We can write Lq as follows:

Lq =

∞∑
n=c

(n− c)Pn (5)

To determine Lq , substitute j = n − c or n = c + j in the
above expression, as given below:

Lq =

∞∑
j=0

jPc+j

Pc+j can be written as

P(c+j) =

(
λ

µ
+

λ

2µ
++

λ

cµ

)(
λ

cµ

)j
P0

or
P(c+j) =

(ρ)

c!cj
ρjP0

Hence,
Lq =

∞∑
j=0

(
(ρ)
c!cj ρ

jP0

)

=
(
ρc+1

c!c

)
P0

∞∑
j=0

j
(
ρ
c

)j−1
which can be written as follows:

=
(
ρc+1

c!×cj

)
× P0 ×

∂

(
∞∑
j=0

(ρc)
j

)
∂(ρc)


=
(
ρc+1

c!c

)
× P0 ×

∂

(
∞∑
j=0

(ρc)
j

)
∂(ρc)


=
(
ρc+1

c!c

)
× P×0

∂

(
1

1− ρ
c

)
∂(ρc)


Lq =

(
ρc+1

(c− 1)!(c− ρ)2

)
P0 (6)

After determining Lq , the waiting time in the queue Wq is
estimated using Littles law as given below: [32], [33].

Wq =
Lq
λ

Customers waiting in the service system will be the addition
of Wq and service time.

W =Wq +
1

µ

The number of customers L in the service system will be,

L = λW

= λWq +
λ
µ

(7)

B. Scheduling Policies

The scheduling policy of a queuing system is crucial be-
cause it will largely affect the efficiency of the system [34].
However, it is irrational if we only take efficiency into con-
sideration when dealing with social research. Other factors,
such as fairness and well-being of a society, are of equal
importance. Thus, they should be considered as well. We
take into consideration multiple dimensional elements, and
comparisons are made based on those elements. The main
purpose is to evaluate the utilization of volunteer resources and
explain how the situation can be improved from the viewpoint
resource utilization.

Specifically, to evaluate the utilization and efficiency of
volunteer resource, three scheduling policies are proposed
and comparisons of resource utilization are made. The first
scheduling policy is First Come First Serve, which is used
to describe how the volunteer resource is utilized in Hurri-
cane Harvey. Additionally, two scheduling policies are pro-
posed: priority scheduling and hybrid scheduling. The priority
scheduling policy takes the significance and urgency of each

request into consideration. And it gives high priority to the old,
the sick, the handicapped and the young. If all the requests
are with the same priority, it follows First Come First Serve
criteria. Lastly, the hybrid scheduling policy is proposed to
further improve the whole system.

Algorithm 1: FCFS scheduling with single server
Input: sequence of request[1..n], arrivalTime,

serviceTime
Output: The scheduled sequence of requests[1..n]
Sorting the sequence of request according to their

arrivalTime;
for every request i ∈ R do

waitingT[i]=0;
for every j from 0 to i− 1 do

waitingTime[i]=waitingTime[i-1]+serviceTime[j];
end

end
for every request i ∈ R do

totalT[i]=waitingT[i]+serviceT[i];
averageWT=averageWT+waitingT[i];
averageTAT=averageTAT+TAT[i];

end

1) First come first serve: First Come, First Served is a
service scheduling policy whereby requests of customers are
sequentially attended in the order that they arrived, without
taking into consideration other preferences or priorities [34].
Generally, it is the most well-accepted public service schedul-
ing policy for processing of queues in which customers wait
for service that is not prearranged or booked ahead of time.
In the analysis of FCFS policy, we assume that all the tweets
are processed according to the time they are created. Namely,
rescue service is scheduled for the request that has the earliest
requesting time. Priority will not be taken into consideration,
though some people may be in a critical condition and are in
need of service. FCFS scheduling policy has some important
details that deserve discussion.

• In the FCFS scheduling, the rescue service is non-
preemptive, no matter how long it takes to finish the
rescue service.

• Though the FCFS scheduling is fair (intuitively), it is
unfair in the sense that non-urgent requests prior to the
urgent requests and the time-consuming requests keep a
lot of requests wait.

• The average waiting time is relatively long.
• It can be embedded within other scheduling policy.

The FCFS scheduling algorithm for the single-server case
is described in Algorithm 1.

2) Static Priority Scheduling: Priority scheduling refers
to the method of scheduling requests for service based on
priority. It involves potential priority assignment, and requests
with higher priority will be scheduled first, whereas requests
with equal priority are scheduled based on a First-Come-

First-Server (FCFS) basis. The priority can be either static
or dynamic. Static priorities are assigned upon the coming of
a request, whereas dynamic priorities are assigned depending
on the various specific situations. Priority scheduling can be
either preemptive or non-preemptive. A preemptive priority
scheduling will preemptive the service if the priority of
the newly arrived request is higher than the priority of the
currently ongoing request, while a non-preemptive priority
scheduling will simply put the new requests at the end of
the queue according to FCFS. The priority scheduling policy
also has some essential details as follows:
• Priority scheduling is intuitively unfair since there are

queue-jumpers. However, it allows the important or ur-
gent requests to be scheduled first.

• Requests with lower priority may be postponed if there
are many requests with higher priority.

Based on our analysis, priority scheduling is necessary.
First, it allows the relatively urgent request to be scheduled
first. Second, compared to plenty of requests such as the
requests for rescuing pets, the requests for rescuing human
should be scheduled first especially when the resource is
limited. The Static Priority algorithm used in this paper can
be seen in Algorithm 2.

Algorithm 2: Priority scheduling with multi-server
Input: R: a sequence of requests, at:arrivalTime,

st:serviceTime, iat:interarrivalTime
Input: released, occupied: server
Output: scheduling sequence fo request
Initiation: all the servers are released at beginning
Sort R with regard to starting time of this rescue
for every I ∈ R do

add I to priority queue implemented by max heap
Dequeue the root element K of max heap
Move all servers in occupied which finished before

the start of K into released
if released 6= ∅ then

m = select(earliestreleased)
Move m from released to occupied

else
m = m+ 1
create Rm and initialize it to ∅

end
Add K to Rm

end

3) Hybrid Scheduling: The hybrid scheduling policy is
proposed to further improve the utilization of resource and
enhance the efficiency of the queueing system. Basically,
the hybrid scheduling is a combination of FCFS scheduling,
priority scheduling and dynamic scheduling. The dynamic
scheduling method discussed in this paper is different from the
paper of Liu and Layland [35]. One of the differences is that
the hybrid scheduling policy is non-preemptive. The hybrid
scheduling policy discussed in this paper is different from that
discussed in real-time scheduling for CPU scheduling. Some
of the differences are listed in the following.

t2t1 t3 t4 T
0

t2t1 t3 t4 T
0

Start rescue
for R1

End rescue
for R1

t5

Start rescue
for R2

End rescue
for R2

t5

Total waiting time=3R1+2R3+R2

Total waiting time=3R2+2R4+R1

FCFS when all servers
are occupied

Optimized scheduling when
all servers are occupied

Fig. 4. The hybrid scheduling when all the servers are occupied. The box
Ri represents request Ri that arrives in the queue, and the length of a box
represents the length of service time. When all the servers are occupied,
scheduling the shortest request first could optimize the waiting time for the
system

• The hybrid scheduling policy is non-preemptive.
• If the server is idle, incoming requests will be scheduled

based on FCFS.
• The priority value is assigned to every request upon its

creation, and it can be changed due to an emergency sit-
uation. Specifically, if our classification algorithm detects
words like “old”,“kid”,“child” and “handicap”, then this
tweet will be given higher priority.

• When a server is available, requests with the highest
priority will be scheduled first. If all the requests are with
the same priority, then the request with the earliest finish
time will be scheduled first.

The hybrid scheduling policy discussed in this paper was based
on the foregoing rules, and the idea of scheduling request with
the earliest finish time can be explained by the Figure 4.

4) Performance Evaluation: In order to evaluate the utiliza-
tion resource and performance of the Request-Server queuing
system under different scheduling policies, the average waiting
time and delay probability are used to measure the perfor-
mance.

There is always a trade-off between quality and efficiency
in a single-server queue. For instance, the calling center where
there is only one server, if good service is provided, then
people in line have to wait longer. To evaluate the quality
of service for such a system, the fraction of customers who
have to wait before receiving services, also known as the delay
probability, and the average customer waiting time are two
important performance measures. Usually, these two measures
should be maintained at certain levels to meet customer
expectations [36]. For a single-server M/G/1 queue, where

Algorithm 3: Hybrid scheduling
Input: R: a sequence of requests
Input: released, occupied: server
Output: scheduling sequence of request
initialize all the servers’ state and requests’ state
sort request according to the arrival time
for every request I in R do

if no one waiting in queue then
Move all servers in occupied which finished

before the start of I into released
if released server 6= ∅ then

select(released server)
else

select a new server
end

else
Add I to the priority queue implemented by max

heap
if multiple requests have the same priority with

root element K’ in max heap then
select the request K with the shortest service

time
else

select the root element K of the max heap
end
Move all servers in occupied which finished

before the start of I into released
if released server 6= ∅ then

select(released server)
else

select a new server
end

end
end

the arrival process is assumed to be a homogeneous Poisson
process. Let be the arrival rate of the Poisson process,
and let m be the mean service time, then, ρ = λm is the
traffic intensity of the queue [36]. When ρ < 1, it can also
be interpreted as the server utilization [36]. By the Poisson
property, the delay probability is given by Pw = 1− ρ. When
ρ is close to one, almost all customers have to wait before
receiving service [36], [37].

V. EXPERIMENTAL RESULTS

1) Results of Goodness-of-fit Test: The tweets used in this
paper is collected from Aug. 26 to Aug. 30. It is reasonable
to test if all the data is governed by the same distribution
with the same parameters, since that the data distribution is
affected by human habit. Specifically, at night the inter-arrival
time of tweets is larger than that of daylight, since most people
are asleep. Moreover, all the formulas and equations for the
queuing system are held on the condition that the system
is stationary. Therefore, the distribution test for data and
stationary test for the queue process should be implemented.

Fig. 5. The upper figure shows scatters of victims and volunteers of Hurricane
Harvey in Texas, and the lower figure shows a close look at Houston area,
on August 30, 2017. Red dots denote victims who request help from Twitter
and blue dots represent volunteers with boats.

The goodness-of-fit test is used to fit data into distribu-
tion [38]. We assume that inter-arrival time of rescue tweets
from four successive days is governed by the exponential
distribution with the same λ. However, the result of the
goodness-of-fit test shows that the hypothesis is rejected by
small p-value (less than 5%). We also assume that the inter-
arrival time on a daily basis is governed by the exponential
distribution with different λ value, and it is also rejected.
With more experiments being conducted, it shows that the
inter-arrival time is governed by the normal distribution. The
average of inter-arrival time for the four successive days is
71,67,38 and 32 minutes, respectively. And Figure 6 shows
how the data is distributed.

The reason why the average inter-arrival time decreases
is that the data used in this paper is just a sample of the
full dataset. Moreover, the value of inter-arrival time for the
rescue tweets is relatively large as Hurricane Harvey landed in
Houston. As the Hurricane Harvey escalated, more and more
people were flooded and trapped, more and more people turn
to Twitter for help. As a result, there are a few requests asking
for help on the first day of Hurricane Harvey, and an increasing
number of people ask for help later.

Fig. 6. The probability density distribution of inter-arrival time, from tweets
data collected from Aug 27 to Aug 30, 2017.

A similar goodness-of-fit test is performed for the service
time, which shows that the service time is governed by the
normal distribution with average service time µ = 54 minutes.

2) Results of Stationary Test: The stationary test shows
the similar pattern with the goodness-of-fit test. Namely, if
we combine all the data as input for the stationary test, the
null hypothesis will be rejected. That is, the system is not
stationary, since we mixed all the data origins from different
sources. Therefore, the fundamental assumption upon which
formula 1 through formula 5 is not justifiable. Formula 1
through formula 5 can not be used to estimate the queueing
system. All the queue-related values are calculated manually
after running the scheduling algorithms.

3) Comparison of Scheduling Policy: To evaluate the uti-
lization and efficiency of using the public resource (volunteers)
during the Hurricane Harvey, we compared three scheduling
methods. Basically, the hybrid scheduling algorithm achieved
the best performance. First of all, the hybrid scheduling policy
has the smallest average waiting time, which is 35 minutes
less than that of FCFS scheduling policies, and 39 minutes
less than the priority scheduling. Namely, victims will wait for
less time before getting rescued if the hybrid scheduling policy
is used. Second of all, the system with the hybrid scheduling
method has the smallest average queue size. Lastly, the system
with the hybrid scheduling method has the smallest ratio of
waiting, which indicates that fewer people will wait in line
before getting service. The comparisons can be summarized
as follows:
• The FCFS algorithm slightly over-performs the static

priority scheduling. The static priority has the largest
average waiting time of 3.73 hours among the three
algorithms, as requests with higher priority cut in line
and keep other requests waiting.

• The static priority algorithm is more rational since it
takes into consideration the significance and urgency of

Fig. 7. The number of requests waiting in queue. The increments on the
y-axis indicate requests entering the queue, and the decrements on the y-axis
signify requests leaving the queue. The y-value at a specific time represents
the length of the queue.

a request.
• The hybrid algorithm has the best performance, with

the smallest average waiting time of 3.08 hours, which
is less than the average waiting time of 3.67 hours
in the FCFS scheduling, and 3.73 hours in the static
priority scheduling. Moreover, the volunteer resource is
fully used while efficiency is guaranteed by having the
smallest average time of 3.08 hours in the system. The
performance comparisons on average waiting time are
visualized in Figure 8.

• Delay probability (the fraction of customers who have
to wait before receiving services) for the FCFS, priority
scheduling and hybrid scheduling is 0.84, 0.89 and 0.81,
respectively. Namely, fewer people will have to wait
before being rescued in the hybrid scheduling.

•

Fig. 8. The average waiting time in the queue, including all the requests that
have been served in the system.

The results can be explained for the following reasons.

FCFS over-performs static priority because when all the vol-
unteers are busy, if a request with higher priority cuts in line,
it will make all the requests in the line wait. Similarly, the
hybrid scheduling minimized such waiting time by scheduling
the request with the shortest service time first. As a result,
the system as a whole can be optimized with minimal waiting
time, and the average number of people waiting in line are the
smallest. However, this improvement in performance is at the
cost of keeping requests with a longer service time waiting.

The implementation of algorithms on the dataset shows that
volunteer resource is insufficient for the rescue. As is shown in
figure 8, the average waiting time keeps increasing at the end
of every day. Two solutions can be used to solve this problem.
One is to increase the service rate of the volunteer. Another
way is to increase the number of volunteers in the system.
This conclusion is substantiated by the increasing number of
tweets looking for volunteers.

VI. DISCUSSION

In this paper, we conducted a study to utilize a public
social media platform (Twitter) for flood rescue work. We
trained a tweet classifier, which is able to identify flood
victims and volunteers. Based on the tweet classification, we
designed a series of scheduling algorithms: first come first
serve, static priority scheduling, and hybrid scheduling. From
the extensive experimental study, we demonstrated that the hy-
brid scheduling approach is much more efficient than random
scheduling for flood rescue. Based on the comparisons of the
three algorithms’ performance, we conclude that the average
waiting time in queue, and average time in the system, can
be obviously reduced by implementing the hybrid scheduling
policy. Moreover, with the help of text classification techniques
and scheduling algorithms, this strategy can be transferred to
other disaster rescue work when public resources are needed.

REFERENCES

[1] F. Jin, W. Wang, L. Zhao, E. Dougherty, Y. Cao, C.-T. Lu, and
N. Ramakrishnan, “Misinformation propagation in the age of twitter,”
Computer, vol. 47, no. 12, pp. 90–94, 2014.

[2] F. Jin, E. Dougherty, P. Saraf, Y. Cao, and N. Ramakrishnan, “Epidemio-
logical modeling of news and rumors on twitter,” in Proc. SNAKDD’13.
ACM, 2013, p. 8.

[3] F. Jin, W. Wang, P. Chakraborty, N. Self, F. Chen, and N. Ramakrishnan,
“Tracking multiple social media for stock market event prediction,” in
ICDM. Springer, 2017, pp. 16–30.

[4] F. Jin, F. Chen, R. P. Khandpur, C.-T. Lu, and N. Ramakrishnan,
“Absenteeism detection in social media,” in Proc. SDM’17. SIAM,
2017, pp. 606–614.

[5] F. Jin, “Algorithms for modeling mass movements and their adoption in
social networks,” Ph.D. dissertation, Virginia Tech, 2016.

[6] F. Jin, R. P. Khandpur, N. Self, E. Dougherty, S. Guo, F. Chen, B. A.
Prakash, and N. Ramakrishnan, “Modeling mass protest adoption in
social network communities using geometric brownian motion,” in Proc.
KDD’14. ACM, 2014, pp. 1660–1669.

[7] H. Topi and A. Tucker, Computing handbook: Information systems and
information technology. CRC Press, 2014, vol. 2.

[8] J. Solka, “Text data mining: theory and methods,” Statistics Surveys,
vol. 2, pp. 94–112, 2008.

[9] A. McCallum and K. Nigam, “A comparison of event models for naive
bayes text classification,” 1998.

[10] K. Nigam, A. K. Mccallum, S. Thrun, and T. Mitchell, “Text classifi-
cation from labeled and unlabeled documents using em,” in MACHINE
LEARNING, 1999, pp. 103–134.

[11] J. M. Keller, M. R. Gray, and J. A. Givens, “A fuzzy k-nearest neighbor
algorithm,” Systems, Man and Cybernetics, IEEE Transactions on, vol.
SMC-15, no. 4, pp. 580–585, July 1985.

[12] Y. Liao and V. Vemuri, “Use of k-nearest neighbor classifier for intrusion
detection,” vol. 21, no. 5, 2002.

[13] M. Allahyari, S. Pouriyeh, M. Assefi, S. Safaei, E. D. Trippe, J. B.
Gutierrez, and K. Kochut, “A brief survey of text mining: Classification,
clustering and extraction techniques,” arXiv preprint arXiv:1707.02919,
2017.

[14] J. Suykens and J. Vandewalle, “Least squares support vector machine
classifiers,” Neural Processing Letters, vol. 9, no. 3, pp. 293–300, Jun
1999.

[15] C. Manning, P. Raghavan, and H. Schütze, “Introduction to information
retrieval/christopher d,” 2009.

[16] U. Schwiegelshohn and R. Yahyapour, “Analysis of first-come-first-serve
parallel job scheduling,” in SODA, vol. 98, 1998, pp. 629–638.

[17] J. Y.-T. Leung and J. Whitehead, “On the complexity of fixed-priority
scheduling of periodic, real-time tasks,” Performance evaluation, vol. 2,
no. 4, pp. 237–250, 1982.

[18] J. Sivic and A. Zisserman, “Efficient visual search of videos cast as text
retrieval,” vol. 31, no. 4, pp. 591–606, 2009.

[19] R. Berwick, “An idiots guide to support vector machines (svms),”
Retrieved on October, vol. 21, p. 2011, 2003.

[20] P. Perruchet and R. Peereman, “The exploitation of distributional in-
formation in syllable processing,” Journal of Neurolinguistics, vol. 17,
no. 2, pp. 97–119, 2004.

[21] M. Ghosh, “Statistical decision theory and bayesian analysis,” Journal
of the American Statistical Association, vol. 83, no. 401, March 1988.

[22] K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft, When Is
“Nearest Neighbor” Meaningful? Berlin, Heidelberg: Springer Berlin
Heidelberg, 1999, pp. 217–235.

[23] R. A. Berk, Classification and Regression Trees (CART). New York,
NY: Springer New York, 2008, pp. 1–65.

[24] D. W. Hosmer Jr, S. Lemeshow, and R. X. Sturdivant, Applied logistic
regression. John Wiley & Sons, 2013, vol. 398.

[25] D. G. Kendall, “Stochastic processes occurring in the theory of queues
and their analysis by the method of the imbedded markov chain,” The
Annals of Mathematical Statistics, pp. 338–354, 1953.

[26] H. Tijms, “Algorithmic analysis of queues,” A First Course in Stochastic
Models, 2003.

[27] H. A. Taha, Operations research: an introduction. Macmillan, 1992.
[28] R. P. Sen, Operations research: algorithms and applications. PHI

Learning Pvt. Ltd., 2010.
[29] N. Prabhu, “A bibliography of books and survey papers on queueing

systems: Theory and applications,” Queueing Systems, vol. 2, no. 4, pp.
393–398, 1987.

[30] N. Gautam, Operations Research and Management Science Handbook.
CRC, 2007.

[31] A. A. Markov, “Extension of the law of large numbers to dependent
quantities,” Izv. Fiz.-Matem. Obsch. Kazan Univ.(2nd Ser), vol. 15, pp.
135–156, 1906.

[32] A. Leon-Garcia and A. Leon-Garcia, Probability, statistics, and random
processes for electrical engineering. Pearson/Prentice Hall 3rd ed.
Upper Saddle River, NJ, 2008.

[33] A. O. Allen, Probability, statistics, and queueing theory. Academic
Press, 2014.

[34] X. Wu, R. Srikant, and J. R. Perkins, “Scheduling efficiency of
distributed greedy scheduling algorithms in wireless networks,” IEEE
Transactions on Mobile Computing, vol. 6, no. 6, 2007.

[35] C. Liu and J. Layland, “Scheduling algorithms for multiprogramming in
a hard-real-time environment,” vol. 20, no. 1, pp. 46–61, January 1973.

[36] J. Dai and S. He, “Queues in service systems: Customer abandonment
and diffusion approximations,” in Transforming Research into Action.
INFORMS, 2011, pp. 36–59.

[37] R. W. Wolff, Stochastic modeling and the theory of queues. Pearson
College Division, 1989.

[38] Formal Goodness Of Fit: Summary Statistics And Model Selection. New
York, NY: Springer New York, 2007, pp. 123–175.

